SOME IDENTITIES ON SUM OF FINITE PRODUCTS OF GEGENBAUER POLYNOMIALS

被引:0
|
作者
Wang, Xuan [1 ]
机构
[1] Northwest Univ, Res Ctr Number Theory & Its Applicat, Xian 710127, Shaanxi, Peoples R China
关键词
Gegenbauer polynomial; new identity; convolution sums; CHEBYSHEV POLYNOMIALS;
D O I
10.17654/0972555524024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the sum of finite products of Gegenbauer polynomials and derive some new and interesting identities by means of algebraic manipulations, combinatorial methods and power series properties.
引用
收藏
页码:397 / 412
页数:16
相关论文
共 50 条
  • [21] Some identities of Bell polynomials
    Kim, Dae San
    Kim, Taekyun
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (10) : 2095 - 2104
  • [22] Some identities of λ-Daehee polynomials
    Lee, Jeong Gon
    Kwon, Jongkyum
    Jang, Gwan-Woo
    Jang, Lee-Chae
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4137 - 4142
  • [23] Some identities of Bell polynomials
    KIM Dae San
    KIM Taekyun
    ScienceChina(Mathematics), 2015, 58 (10) : 2095 - 2104
  • [24] FINITE TRIGONOMETRIC PRODUCT AND SUM IDENTITIES
    Chamberland, Marc
    FIBONACCI QUARTERLY, 2012, 50 (03): : 217 - 221
  • [25] Some asymptotics for Sobolev orthogonal polynomials involving Gegenbauer weights
    Bracciali, Cleonice F.
    Castano-Garcia, Laura
    Moreno-Balcazar, Juan J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (04) : 904 - 915
  • [26] Some Symmetric Identities Involving the Stirling Polynomials Under the Finite Symmetric Group
    Lim, Dongkyu
    Qi, Feng
    MATHEMATICS, 2018, 6 (12):
  • [27] A note on identities for elementary symmetric and power sum polynomials
    Boklan, Kent D.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (01)
  • [28] ON BOUNDS FOR GEGENBAUER POLYNOMIALS
    KHANDEKAR, PR
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (09): : 1018 - &
  • [29] SOME INTEGRALS INVOLVING ASSOCIATED LEGENDRE FUNCTIONS AND GEGENBAUER POLYNOMIALS
    LAURSEN, ML
    MITA, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05): : 1065 - 1068
  • [30] GEGENBAUER POLYNOMIALS REVISITED
    HORADAM, AF
    FIBONACCI QUARTERLY, 1985, 23 (04): : 294 - &