Artificial intelligence applications in education: Natural language processing in detecting misconceptions

被引:0
|
作者
Kokver, Yunus [1 ]
Pektas, Hueseyin Mirac [2 ]
Celik, Harun [2 ]
机构
[1] Ankara Univ, Elmadag Vocat Sch, Comp Technol Dept, Ankara, Turkiye
[2] Kirikkale Univ, Fac Educ Math & Sci Educ, Kirikkale, Turkiye
关键词
Misconception; Natural language processing; Machine learning; Artificial intelligence; STUDENTS CONCEPTIONS; MACHINE; COEFFICIENT; AGREEMENT; NETWORK; SYSTEMS;
D O I
10.1007/s10639-024-12919-1
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This study aims to determine the misconceptions of teacher candidates about the greenhouse effect concept by using Artificial Intelligence (AI) algorithm instead of human experts. The Knowledge Discovery from Data (KDD) process model was preferred in the study where the Analyse, Design, Develop, Implement, Evaluate (ADDIE) instructional design cycle was used. The dataset obtained from 402 teacher candidates was analysed by Natural Language Processing (NLP) methods. Data was classified using Machine Learning (ML), one of the AI tools, and supervised learning algorithms. It was concluded that 175 teacher candidates did not have sufficient knowledge about the concept of greenhouse effect. It was found that the AI algorithm with the highest accuracy rate and used to predict teacher candidates' misconceptions was Multilayer Perceptron (MLP). Furthermore, through the Enhanced Ensemble Model Architecture developed by researchers, the combination of ML algorithms has achieved the highest accuracy rate. The kappa (kappa) value was examined in determining the significant difference between the AI algorithm and the human expert evaluation, and it was found that there was a significant difference, and the strength of agreement was significant according to the research findings. The findings of the current study represent a significant alternative to the prevailing pedagogical approach, which has increasingly come to rely on information technologies in the process of improving conceptual understanding through the detection of conceptual misconceptions. In addition, recommendations were made for future studies.
引用
收藏
页码:3035 / 3066
页数:32
相关论文
共 50 条
  • [21] Enhanced Privacy and Data Protection using Natural Language Processing and Artificial Intelligence
    Martinelli, Fabio
    Marulli, Fiammetta
    Mercaldo, Francesco
    Marrone, Stefano
    Santone, Antonella
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [22] Natural Language Processing and Artificial Intelligence for Enterprise Management in the Era of Industry 4.0
    Mah, Pascal Muam
    Skalna, Iwona
    Muzam, John
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [23] NATURAL-LANGUAGE PROCESSING IN PSYCHIATRY - ARTIFICIAL-INTELLIGENCE TECHNOLOGY AND PSYCHOPATHOLOGY
    GARFIELD, DAS
    RAPP, C
    EVENS, M
    JOURNAL OF NERVOUS AND MENTAL DISEASE, 1992, 180 (04) : 227 - 237
  • [24] Scoping natural language processing in Indonesian and Malay for education applications
    Maxwell-Smith, Zara
    Kohler, Michelle
    Suominen, Hanna
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022): STUDENT RESEARCH WORKSHOP, 2022, : 171 - 228
  • [25] ChatGPT and Other Natural Language Processing Artificial Intelligence Models in Adult Reconstruction
    Magruder, Matthew L.
    Delanois, Ronald E.
    Nace, James
    Mont, Michael A.
    JOURNAL OF ARTHROPLASTY, 2023, 38 (11): : 2191 - 2192
  • [26] Natural language processing and detecting delirium
    Burki, Talha
    LANCET RESPIRATORY MEDICINE, 2022, 10 (07): : 639 - 639
  • [27] Revolution of echocardiographic reporting: the new era of artificial intelligence and natural language processing
    Kenya Kusunose
    Journal of Echocardiography, 2023, 21 : 99 - 104
  • [28] Computational Intelligence for Natural Language Processing
    Cambria, Erik
    White, Bebo
    Durrani, Tariq S.
    Howard, Newton
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2014, 9 (01) : 19 - U1131
  • [29] Artificial intelligence versus natural intelligence in mineral processing
    Ozkan, Safak Gokhan
    PHYSICOCHEMICAL PROBLEMS OF MINERAL PROCESSING, 2023, 59 (05):