Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering

被引:1
|
作者
Zhou, Chun [1 ,2 ]
Zhao, Yan-Mei [1 ,2 ]
Yang, Xiao-Liang [1 ,2 ]
Lu, Yi-Fei [1 ,2 ]
Zhou, Yu [1 ,2 ]
Jiang, Xiao-Lei [1 ,2 ]
Wang, Hai-Tao [1 ,2 ]
Wang, Yang [1 ,2 ]
Li, Jia-Ji [1 ,2 ]
Jiang, Mu-Sheng [1 ,2 ]
Wan, Xiang [1 ,2 ]
Zhang, Hai-Long [1 ,2 ]
Li, Hong-Wei [1 ,2 ]
Bao, Wan-Su [1 ,2 ]
机构
[1] SSF IEU, Henan Key Lab Quantum Informat & Cryptog, Zhengzhou 450001, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
quantum key distribution; satellite-to-ground; beam wandering; 03.67.Dd; 03.67.Hk; 03.67.-a; ATMOSPHERIC-TURBULENCE; ENTANGLEMENT; COMMUNICATION; PURIFICATION;
D O I
10.1088/1674-1056/ad51f6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The reference-frame-independent (RFI) quantum key distribution (QKD) is suitable for satellite-based links by removing the active alignment on the reference frames. However, how the beam wandering influences the performance of RFI-QKD remains a pending issue in satellite-to-ground links. In this paper, based on the mathematical model for characterizing beam wandering, we present the security analysis for satellite-to-ground RFI-QKD and analytically derive formulas for calculating the secret key rate with beam wandering. Our simulation results show that the performance of RFI-QKD is better than the Bennett-Brassard 1984 (BB84) QKD with beam wandering in asymptotic case. Furthermore, the degree of influences of beam wandering is specifically presented for satellite-to-ground RFI-QKD when statistical fluctuations are taken into account. Our work can provide theoretical support for the realization of RFI-QKD using satellite-to-ground links and have implications for the construction of large-scale satellite-based quantum networks.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Reference-frame-independent measurement-device-independent quantum key distribution under reference frame fluctuation
    Gu Wen-Yuan
    Zhao Shang-Hong
    Dong Chen
    Wang Xing-Yu
    Yang Ding
    ACTA PHYSICA SINICA, 2019, 68 (24)
  • [22] One-decoy state reference-frame-independent quantum key distribution*
    Li, Xiang
    Yuan, Hua-Wei
    Zhang, Chun-Mei
    Wang, Qin
    CHINESE PHYSICS B, 2020, 29 (07)
  • [23] Asymmetric reference-frame-independent measurement-device-independent quantum key distribution
    Wei, Kejin
    Chen, Zihao
    LI, Zijian
    Zheng, Bingbing
    Zhang, Zhenrong
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2022, 39 (11) : 3041 - 3048
  • [24] The performance of reference-frame-independent measurement-device-independent quantum key distribution
    Xue, Qinyu
    Jiao, Rongzhen
    QUANTUM INFORMATION PROCESSING, 2019, 18 (10)
  • [25] The performance of reference-frame-independent measurement-device-independent quantum key distribution
    Qinyu Xue
    Rongzhen Jiao
    Quantum Information Processing, 2019, 18
  • [26] One-decoy state reference-frame-independent quantum key distribution
    李想
    远华伟
    张春梅
    王琴
    Chinese Physics B, 2020, (07) : 291 - 295
  • [27] Reference-Frame-Independent Design of Phase-Matching Quantum Key Distribution
    Jin, Anran
    Zeng, Pei
    Penty, Richard, V
    Ma, Xiongfeng
    PHYSICAL REVIEW APPLIED, 2021, 16 (03)
  • [28] Biased decoy-state reference-frame-independent quantum key distribution
    Jianrong Zhu
    Chunmei Zhang
    Qin Wang
    The European Physical Journal D, 2017, 71
  • [29] Reference-frame-independent quantum key distribution with random atmospheric transmission efficiency
    Xue, Yang
    Shi, Lei
    Wei, Jia-Hua
    Yu, Long-Qiang
    Yu, Hui-Cun
    Tang, Jie
    MODERN PHYSICS LETTERS B, 2020, 34 (36):
  • [30] Biased decoy-state reference-frame-independent quantum key distribution
    Zhu, Jianrong
    Zhang, Chunmei
    Wang, Qin
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (12):