Power Estimation Models for Edge Computing Devices

被引:0
|
作者
Kasioulis, Michalis [1 ]
Symeonides, Moysis [1 ]
Pallis, George [1 ]
Dikaiakos, Marios D. [1 ]
机构
[1] Univ Cyprus, Dept Comp Sci, Nicosia, Cyprus
关键词
Power Consumption; Power Modeling; IoT; Edge Computing; Edge Benchmarking;
D O I
10.1007/978-3-031-50684-0_20
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The increasing demand for energy-efficient solutions in IoT devices and edge computing calls for novel methodologies to generate accurate power models for diverse devices, enabling sustainable growth and optimized performance. This paper presents a methodology for creating power models for edge devices and their embedded components. The proposed methodology collects power and resource utilization measurements from the edge device and generates both additive and regression models. The methodology is evaluated on a Raspberry Pi 4 device using a smart plug for power monitoring and various benchmarking tools for CPU and network sub-components. The evaluation shows that the generated models achieve low error, demonstrating the effectiveness of the proposed approach. Our methodology can be applied to any edge device, providing insights into the most efficient power consumption model. The heterogeneity of edge devices poses a challenge to creating a global power model, and our approach provides a solution for developing device-specific power models. Our results indicate that the generated models for Raspberry Pi 4 scored a maximum of 8% MAPE.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 50 条
  • [21] Artificially Evolved Soft Computing Models for Photovoltaic Power Plant Output Estimation
    Prokop, Lukas
    Misak, Stanislav
    Novosad, Tomas
    Kroemer, Pavel
    Platos, Jan
    Snasel, Vaclav
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1011 - 1016
  • [22] EdgeFaaSBench: Benchmarking Edge Devices Using Serverless Computing
    Rajput, Kaustubh Rajendra
    Kulkarni, Chinmay Dilip
    Cho, Byungjin
    Wang, Wei
    Kim, In Kee
    2022 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING & COMMUNICATIONS (IEEE EDGE 2022), 2022, : 93 - 103
  • [23] An Edge Computing Architecture Integrating Virtual IoT Devices
    Datta, Soumya Kanti
    Bonnet, Christian
    2017 IEEE 6TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE), 2017,
  • [24] Quantized Reservoir Computing on Edge Devices for Communication Applications
    Liu, Shiya
    Liu, Lingjia
    Yi, Yang
    2020 IEEE/ACM SYMPOSIUM ON EDGE COMPUTING (SEC 2020), 2020, : 445 - 449
  • [25] Analysing Edge Computing Devices for the Deployment of Embedded AI
    Garcia-Perez, Asier
    Minon, Raul
    Torre-Bastida, Ana I.
    Zulueta-Guerrero, Ekaitz
    SENSORS, 2023, 23 (23)
  • [26] Plant disease detection model for edge computing devices
    Khan, Ameer Tamoor
    Jensen, Signe Marie
    Khan, Abdul Rehman
    Li, Shuai
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [27] Deep Learning Video Analytics on Edge Computing Devices
    Tan, Tianxiang
    Cao, Guohong
    2021 18TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON), 2021,
  • [28] Securing IOT Devices Using SDN and Edge Computing
    Aggarwal, Chaitanya
    Srivastava, Kingshuk
    PROCEEDINGS ON 2016 2ND INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), 2016, : 877 - 882
  • [29] BLADE: An in-Cache Computing Architecture for Edge Devices
    Simon, William Andrew
    Qureshi, Yasir Mahmood
    Rios, Marco
    Levisse, Alexandre
    Zapater, Marina
    Atienza, David
    IEEE TRANSACTIONS ON COMPUTERS, 2020, 69 (09) : 1349 - 1363
  • [30] Joint Allocation of Computing and Wireless Resources to Autonomous Devices in Mobile Edge Computing
    Josilo, Sladana
    Dan, Gyorgy
    MECOMM'18: PROCEEDINGS OF THE 2018 WORKSHOP ON MOBILE EDGE COMMUNICATIONS, 2018, : 13 - 18