Algorithmic Forex Trading Using Q-learning

被引:0
|
作者
Zahrah, Hasna Haifa [1 ]
Tirtawangsa, Jimmy [1 ]
机构
[1] Telkom Univ, Bandung, Indonesia
关键词
Q-learning; LSTM; Forex;
D O I
10.1007/978-3-031-34111-3_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The forex market is a difficult market for traders to succeed. The high noise and volatility of the forex market make the traders very hard to open and close position accurately. Many approaches have been proposed to overcome these difficulties, including algorithmic trading. This research proposed a framework for algorithmic trading using Q-learning with the help of LSTM. The proposed framework uses a finite state space in reinforcement learning to use holding time and higher timeframe market data. The state space is designed so that the agent can open and close positions flexibly, without being restricted by a fixed time window. This allows the agent to take profits and avoid losses. The proposed framework was trained and tested using 15 years' worth of historical data of the EUR/USD currency pair in 5-min timeframe data. The system was evaluated based on various metrics such as profit, drawdown, Sharpe ratio, holding time, and delta time. The results show that with its designed finite state space and flexible time window, the proposed framework achieved consistent profits, reduced losses, and increased overall profits. This suggests that the proposed framework may be a suitable solution for forex market trading.
引用
下载
收藏
页码:24 / 35
页数:12
相关论文
共 50 条
  • [31] Learning rates for Q-learning
    Even-Dar, E
    Mansour, Y
    JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 5 : 1 - 25
  • [32] Learning rates for Q-Learning
    Even-Dar, E
    Mansour, Y
    COMPUTATIONAL LEARNING THEORY, PROCEEDINGS, 2001, 2111 : 589 - 604
  • [33] Contextual Q-Learning
    Pinto, Tiago
    Vale, Zita
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 2927 - 2928
  • [34] Algorithmic Trading Behavior Identification using Reward Learning Method
    Yang, Steve Y.
    Qiao, Qifeng
    Beling, Peter A.
    Scherer, William T.
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3807 - 3814
  • [35] Bayesian Q-learning
    Dearden, R
    Friedman, N
    Russell, S
    FIFTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-98) AND TENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICAL INTELLIGENCE (IAAI-98) - PROCEEDINGS, 1998, : 761 - 768
  • [36] Zap Q-Learning
    Devraj, Adithya M.
    Meyn, Sean P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [37] CVaR Q-Learning
    Stanko, Silvestr
    Macek, Karel
    COMPUTATIONAL INTELLIGENCE: 11th International Joint Conference, IJCCI 2019, Vienna, Austria, September 17-19, 2019, Revised Selected Papers, 2021, 922 : 333 - 358
  • [38] Fuzzy Q-learning
    Glorennec, PY
    Jouffe, L
    PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 659 - 662
  • [39] Convex Q-Learning
    Lu, Fan
    Mehta, Prashant G.
    Meyn, Sean P.
    Neu, Gergely
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 4749 - 4756
  • [40] Q-learning and robotics
    Touzet, CF
    Santos, JM
    SIMULATION IN INDUSTRY 2001, 2001, : 685 - 689