Formation of ZnO Nanostructures Grown on Si and SiO2 Substrates

被引:3
|
作者
Lee, Seungjin [1 ,2 ]
Park, Eunkyung [1 ,2 ]
Lee, Jongtack [1 ,2 ]
Park, Taehee [1 ,2 ]
Lee, Sang-hwa [3 ]
Kim, Jae-yong [3 ]
Yi, Whikun [1 ,2 ]
机构
[1] Hanyang Univ, Dept Chem, Seoul 133070, South Korea
[2] Hanyang Univ, Res Inst Nat Sci, Seoul 133070, South Korea
[3] Hanyang Univ, Dept Phys, Seoul 133070, South Korea
关键词
ZnO Nanorod; Coverage Density; Chemical Bath Deposition; Textured Surface; Surface Morphology; FILMS;
D O I
10.1166/jnn.2013.7687
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
ZnO nanorods are grown on Si-based substrate by chemical bath deposition method in aqueous solution using zinc nitrate hexahydrate. Various substrates having different surface morphology are used to evaluate their effect on growing ZnO nanorods, such as flat Si(100) wafer, small and large textured-Si wafer, porous silicon, flat SiO2 wafer, small and large textured-SiO2 wafer. The length, diameter, geometry, and coverage density of ZnO nanorods are investigated by field-emission scanning electron microscopy and summarized. SiO2 is a preferred substrate for the growth of ZnO nanorods to Si if the surface morphology of substrate is same, and the textured surface has much higher coverage density (>95%) than the flat surface. Each nanorod is vertically grown along the c-axis on the top of each pyramid face for textured substrate, and forms the 3D sea sponge-like ZnO structure. The characteristics of ZnO nanorods grown on various substrates are analyzed by grazing-angle X-ray diffraction (XRD) and photoluminescence (PL) measurements.
引用
收藏
页码:6264 / 6268
页数:5
相关论文
共 50 条
  • [31] Tunable SiO2/Si-based nanostructures
    A. N. Georgobiani
    A. E. Atamuratov
    U. A. Aminov
    T. A. Atamuratov
    Inorganic Materials, 2009, 45 : 900 - 904
  • [32] Tunable SiO2/Si-based nanostructures
    Georgobiani, A. N.
    Atamuratov, A. E.
    Aminov, U. A.
    Atamuratov, T. A.
    INORGANIC MATERIALS, 2009, 45 (08) : 900 - 904
  • [33] Thermal imaging of ZnO thin film grown by RF sputtering on metal/ZnO/SiO2/Si configuration
    Verma, AJ
    Kapoor, A
    Tripathi, KN
    SEMICONDUCTOR DEVICES, 1996, 2733 : 442 - 444
  • [34] Phase and structural characterization of vanadium oxide films grown on amorphous SiO2/Si substrates
    Youn, DH
    Kim, HT
    Chae, BG
    Hwang, YJ
    Lee, JW
    Maeng, SL
    Kang, KY
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2004, 22 (03): : 719 - 724
  • [35] Selective Growth of ZnO Nanorods on SiO2/Si Substrates Using a Graphene Buffer Layer
    Choi, Won Mook
    Shin, Kyung-Sik
    Lee, Hyo Sug
    Choi, Dukhyun
    Kim, Kihong
    Shin, Hyeon-Jin
    Yoon, Seon-Mi
    Choi, Jae-Young
    Kim, Sang-Woo
    NANO RESEARCH, 2011, 4 (05) : 440 - 447
  • [36] Selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer
    Won Mook Choi
    Kyung-Sik Shin
    Hyo Sug Lee
    Dukhyun Choi
    Kihong Kim
    Hyeon-Jin Shin
    Seon-Mi Yoon
    Jae-Young Choi
    Sang-Woo Kim
    Nano Research, 2011, 4 : 440 - 447
  • [37] Formation and optical properties of GaSb quantum dots epitaxially grown on Si substrates using an ultrathin SiO2 film technique
    Nakamura, Yoshiaki
    Sugimoto, Tomohiro
    Ichikawa, Masakazu
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (01)
  • [38] Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system
    Xu, XL
    Wang, P
    Qi, ZM
    Ming, H
    Xu, J
    Liu, HT
    Shi, CS
    Lu, G
    Ge, WK
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (40) : L607 - L613
  • [39] Electrical, Photoelectrical and Morphological Properties of ZnO Nanofiber Networks Grown on SiO2 and on Si Nanowires
    Celeste Vega, Nadia
    Tirado, Monica
    Comedi, David
    Rodriguez, Andres
    Rodriguez, Tomas
    Hughes, Gareth M.
    Grovenor, Chris R. M.
    Audebert, Fernando
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2013, 16 (03): : 597 - 602
  • [40] KINETICS OF SILICIDE FORMATION BY THIN-FILMS OF V ON SI AND SIO2 SUBSTRATES
    KRAUTLE, H
    NICOLET, MA
    MAYER, JW
    JOURNAL OF APPLIED PHYSICS, 1974, 45 (08) : 3304 - 3308