On Disjunction Convex Hulls by Lifting

被引:1
|
作者
Qu, Yushan [1 ]
Lee, Jon [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
来源
COMBINATORIAL OPTIMIZATION, ISCO 2024 | 2024年 / 14594卷
基金
美国国家科学基金会;
关键词
mixed-integer optimization; disjunction; big M; lifting; convex hull; facet;
D O I
10.1007/978-3-031-60924-4_1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the natural extended-variable formulation for the disjunction of n+1 polytopes in R-d. We demonstrate that the convex hull D in the natural extended-variable space Rd+n is given by full optimal big-M lifting (i) when d <= 2 (and that it is not generally true for d >= 3), and also (ii) when the polytopes are all axis-aligned hyper-rectangles. We give further results on the polyhedral structure of D, emphasizing the role of full optimal big-M lifting.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [41] CONVEX HULLS FOR RANDOM LINES
    DEVROYE, L
    TOUSSAINT, G
    JOURNAL OF ALGORITHMS, 1993, 14 (03) : 381 - 394
  • [42] Nonclassical Probability and Convex Hulls
    Bradley, Seamus
    ERKENNTNIS, 2017, 82 (01) : 87 - 101
  • [43] Metric entropy of convex hulls
    Fuchang Gao
    Israel Journal of Mathematics, 2001, 123 : 359 - 364
  • [44] Convex Hulls Under Uncertainty
    Agarwal, Pankaj K.
    Har-Peled, Sariel
    Suri, Subhash
    Yildiz, Hakan
    Zhang, Wuzhou
    ALGORITHMICA, 2017, 79 (02) : 340 - 367
  • [45] Convex hulls of Coxeter groups
    Brandman, J
    Fowler, J
    Lins, B
    Spitkovsky, I
    Zobin, N
    FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 213 - 240
  • [46] STABILIZATION OF SINGULARITIES OF CONVEX HULLS
    SEDYKH, VD
    MATHEMATICS OF THE USSR-SBORNIK, 1988, 135 (3-4): : 499 - 505
  • [47] On Convex Hulls of Epigraphs of QCQPs
    Wang, Alex L.
    Kilinc-Karzan, Fatma
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2020, 2020, 12125 : 419 - 432
  • [48] Convex Hulls under Uncertainty
    Agarwal, Pankaj K.
    Har-Peled, Sariel
    Suri, Subhash
    Yildiz, Hakan
    Zhang, Wuzhou
    ALGORITHMS - ESA 2014, 2014, 8737 : 37 - 48
  • [49] INTERIOR POINTS OF CONVEX HULLS
    BONNICE, WE
    REAY, JR
    ISRAEL JOURNAL OF MATHEMATICS, 1966, 4 (04) : 243 - &
  • [50] Nonclassical Probability and Convex Hulls
    Seamus Bradley
    Erkenntnis, 2017, 82 : 87 - 101