CO2 2 electroreduction on single atom catalysts: Role of the local coordination

被引:0
|
作者
Emken, Simon [1 ]
Di Liberto, Giovanni [1 ]
Pacchioni, Gianfranco [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Sci Mat, via R Cozzi 55, I-20125 Milan, Italy
关键词
DFT; SAC; Catalysis; INITIO MOLECULAR-DYNAMICS; NITROGEN REDUCTION; OXYGEN REDUCTION; ENVIRONMENT; EVOLUTION; WATER; TRANSITION; COMPLEXES; OXIDATION; GRAPHENE;
D O I
10.1016/j.electacta.2024.144714
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Single Atom Catalysts (SACs) are a new frontier in catalysis, merging the positive aspects of both homogeneous and heterogenous catalysts. CO2 2 electrochemical reduction is a key reaction for the energy transition. In this work, we investigate the role of the local coordination on the activation of CO2 2 on SACs, by means of density functional theory (DFT) calculations. We scrutinize 20 transitional metal atoms embedded in a graphene support. The results indicate that the local coordination has a critical role both to the binding energy of the metal to the support and the activation of CO2. 2 . The role of the environment around the active site is as important as the nature of the metal atom. At the same time, the stability of reaction intermediates strongly depends on the local coordination. In some cases, the relative stability of the intermediates changes as function of the environment, affecting the selectivity of the reaction. This study provides evidence of the importance of the local coordination in single-atom catalysis, a crucial aspect if one is interested in providing a rationale to the reactivity, or in predicting novel catalysts.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Boosting CO2 electroreduction to CO with abundant nickel single atom active sites†
    Wang, Wei-juan
    Cao, Changsheng
    Wang, Kaiwen
    Zhou, Tianhua
    INORGANIC CHEMISTRY FRONTIERS, 2021, 8 (10) : 2542 - 2548
  • [42] Accelerating CO2 Electroreduction to CO Over Pd Single-Atom Catalyst
    He, Qun
    Lee, Ji Hoon
    Liu, Daobin
    Liu, Yumeng
    Lin, Zhexi
    Xie, Zhenhua
    Hwang, Sooyeon
    Kattel, Shyam
    Song, Li
    Chen, Jingguang G.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (17)
  • [43] Rational Design of Heterogeneous Dual-Atom Catalysts for CO2 Electroreduction Reactions
    Jafarzadeh, Mohammad
    Daasbjerg, Kim
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (13) : 6851 - 6882
  • [44] Efficient electroreduction of CO2 to CO on silver single-atom catalysts: Activity enhancement through coordinated modulation of polyaniline
    Zhang, Teng
    Lu, Xingyu
    Qi, Wei
    Qin, Gaowu
    Li, Song
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 349
  • [45] Molten salt assisted synthesis of Single-Atom nickel catalysts for electroreduction of CO2 with nearly 100% CO selectivity
    Yan, Xiao-Chun
    Dong, Hong
    Tong, Hao
    Wang, Ya
    Shao, Lu-Hua
    Du, Yu-Jiang
    Ge, Jun-Tao
    Fang, Wen-Bin
    Zhang, Feng-Ming
    APPLIED SURFACE SCIENCE, 2023, 636
  • [46] Applications of Single-atom Catalysts in CO2 Conversion
    Qin Yongji
    Luo Jun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (09):
  • [47] Structure Sensitivity in Single-Atom Catalysis toward CO2 Electroreduction
    Gao, Dunfeng
    Liu, Tianfu
    Wang, Guoxiong
    Bao, Xinhe
    ACS ENERGY LETTERS, 2021, 6 (02) : 713 - 727
  • [48] Nickel Single Atom Density-Dependent CO2 Efficient Electroreduction
    Zhang, Fengwei
    Zhang, Han
    Jia, Zhenhe
    Chen, Shuai
    Li, Siming
    Li, Jijie
    Zan, Wen-Yan
    Wang, Qiang
    Li, Yawei
    SMALL, 2024, 20 (16)
  • [49] Steering the Reaction Pathway of CO2 Electroreduction by Tuning the Coordination Number of Copper Catalysts
    Jiao, Jiapeng
    Kang, Xinchen
    Yang, Jiahao
    Jia, Shuaiqiang
    Peng, Yaguang
    Liu, Shiqiang
    Chen, Chunjun
    Xing, Xueqing
    He, Mingyuan
    Wu, Haihong
    Han, Buxing
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (23) : 15917 - 15925
  • [50] Design strategies and mechanism studies of CO2 electroreduction catalysts based on coordination chemistry
    Zhang, Rui-Zhe
    Wu, Bo-Yuan
    Li, Qiang
    Lu, Le-Le
    Shi, Wei
    Cheng, Peng
    COORDINATION CHEMISTRY REVIEWS, 2020, 422