Origins of strength stabilities at elevated temperatures in additively manufactured refractory high entropy alloy

被引:1
|
作者
Zhang, Yongyun [1 ,2 ]
Yu, Kaiping [3 ]
Qin, Bailiang [1 ]
Yang, Congrui [1 ]
Ye, Shulong [4 ]
Feng, Chuangshi [2 ]
Zhang, Fuxiang [2 ]
Ouyang, Di [1 ]
Liu, Lin [5 ,6 ]
Ke, Haibo [2 ]
Chan, K. C. [1 ]
Wang, Weihua [2 ,7 ]
机构
[1] Hong Kong Polytech Univ, Res Inst Adv Mfg, Dept Ind & Syst Engn, Dongguan, Peoples R China
[2] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
[3] Univ Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong, Peoples R China
[4] Shenzhen MSU BIT Univ, Fac Mat Sci, Shenzhen 518172, Peoples R China
[5] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[6] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
[7] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Refractory high-entropy alloys; Additive manufacturing; Lattice distortion; Mechanical properties; Elevated temperatures; LOCAL LATTICE DISTORTION; MECHANICAL-PROPERTIES; METAL-DEPOSITION; PHASE-STABILITY; OXIDATION; STRAIN; MICROSTRUCTURE; STRESS; MODEL;
D O I
10.1016/j.msea.2024.147225
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
While refractory high-entropy alloys (RHEAs) show promising potential for extreme applications, those directly fabricated via additive manufacturing methods have been hindered by their inferior mechanical properties, particularly at high temperatures. In this study, we successfully produced a Hf-Nb-Ti-V RHEA using directed energy deposition (DED) technique, achieving satisfactory tensile properties across a wide temperature range. This was accomplished by inducing severe lattice distortions in the fabricated RHEA, which can be traced back to the local chemical fluctuations present in the newly fabricated RHEA and the significant atomic radius mismatch. Due to strong solute pinning, these factors contribute to the superior yield strength of the DED-fabricated RHEA across a wide temperature range. Furthermore, the elastic constants in the fabricated RHEA show a negligible temperature dependence, revealed by first-principles calculations, ensuring satisfactory strengths even at high temperatures. This alloy design strategy, which involves introducing significant lattice distortion and maintaining the temperature-low sensitivity of the elastic moduli, opens up new possibilities for directly fabricating RHEAs with superior high-temperature properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Creep behavior of additively manufactured high strength A205 aluminum alloy
    Kulkarni, Anup
    Srinivasan, Dheepa
    Ravanappa, Praveen
    Jayaram, Vikram
    Kumar, Praveen
    ADDITIVE MANUFACTURING LETTERS, 2023, 6
  • [42] Toward tunable microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy
    Li, Hongge
    Fu, Wujing
    Chen, Tian
    Huang, Yongjiang
    Ning, Zhiliang
    Sun, Jianfei
    Bai, Houyi
    Dai, Xianwu
    Fan, Hongbo
    Ngan, Alfonso H. W.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 924
  • [43] In-situ investigation of deformation behavior in additively manufactured FeCoCrNiMn high entropy alloy
    Zheng, Mengyao
    Li, Chuanwei
    Zhang, Lunfeng
    Zhang, Xinyu
    Ye, Zhenhua
    Yang, Xudong
    Gu, Jianfeng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [44] Additively manufactured CrMnFeCoNi/AlCoCrFeNiTi0.5 laminated high-entropy alloy with enhanced strength-plasticity synergy
    Guan, S.
    Wan, D.
    Solberg, K.
    Berto, F.
    Welo, T.
    Yue, T. M.
    Chan, K. C.
    SCRIPTA MATERIALIA, 2020, 183 : 133 - 138
  • [45] Multi-scale annealing twins generate superior ductility in an additively manufactured high-strength medium entropy alloy
    Guo, Bojing
    Yang, Zhongsheng
    Wu, Qingfeng
    Xu, Chenbo
    Cui, Dingcong
    Jia, Yuhao
    Wang, Lei
    Li, Junjie
    Wang, Zhijun
    Lin, Xin
    Wang, Jincheng
    He, Feng
    INTERNATIONAL JOURNAL OF PLASTICITY, 2024, 179
  • [46] Ordered nitrogen complexes overcoming strength-ductility trade-off in an additively manufactured high-entropy alloy
    Zhao, Dandan
    Yang, Quan
    Wang, Dawei
    Yan, Ming
    Wang, Pei
    Jiang, Mingguang
    Liu, Changyong
    Diao, Dongfeng
    Lao, Changshi
    Chen, Zhangwei
    Liu, Zhiyuan
    Wu, Yuan
    Lu, Zhaoping
    VIRTUAL AND PHYSICAL PROTOTYPING, 2020, 15 (15) : 532 - 542
  • [47] Nitrogen induced heterogeneous structures overcome strength -ductility trade-off in an additively manufactured high-entropy alloy
    Song, Min
    Zhou, Rui
    Gu, Ji
    Wang, Zhangwei
    Ni, Song
    Liu, Yong
    APPLIED MATERIALS TODAY, 2020, 18
  • [48] A lightweight NbMoZrTi refractory high entropy alloy with high specific strength
    Chen, Wenjie
    Li, Xinmei
    MATERIALS LETTERS, 2024, 354
  • [49] Softening Mechanisms in Additively Manufactured 420 Stainless Steel at Elevated Temperatures
    Bongao, Harveen
    Pasco, Jubert
    McCarthy, Thomas
    Nyamuchiwa, Kudakwashe
    Aranas, Clodualdo
    TMS 2024 153RD ANNUAL MEETING & EXHIBITION: SUPPLEMENTAL PROCEEDINGS, 2024, : 244 - 253
  • [50] Temperature effects on the strength of a nanocrystalline refractory high entropy alloy
    Roco, Fiorella R.
    Deluigi, O.
    Opazo, Mario
    Amigo, N.
    Rojas-Nunez, J.
    Valencia, F. J.
    Tramontina, D. R.
    Bringa, Eduardo M.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2025, 128