Evaluating Explanations of an Alzheimer's Disease 18F-FDG Brain PET Black-Box Classifier

被引:0
|
作者
De Santi, Lisa Anita [1 ,2 ]
Bargagna, Filippo [1 ,2 ]
Santarelli, Maria Filomena [3 ]
Positano, Vincenzo [1 ,2 ]
机构
[1] Univ Pisa, Dept Informat Engn, Pisa, Italy
[2] Fdn G Monasterio CNR Reg Toscana, UOC Bioingn, Pisa, Italy
[3] CNR Inst Clin Physiol, Pisa, Italy
关键词
Medical Imaging; Black-box DL; Posthoc Explanations; Attribution Maps; Latent Space Interpretation; Evaluating XAI; DIAGNOSIS; DEMENTIA;
D O I
10.1007/978-3-031-44064-9_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
eXplainable Artificial Intelligence (XAI) has been increasingly applied to interpret Deep Neural Networks (DNN) in medical imaging applications, but a general consensus about the best interpretation strategy is missing. This is also due to the absence of a validated framework to assess the quality of the explanations/interpretations produced by different XAI methods. This work aims to quantify the ability of interpretation techniques of producing good explanations and non-misleading representations of what a black-box model has learned. We selected a DNN which classifies 18F-FDG PET images according to the cognitive decline in Alzheimer's disease, and we applied two different interpretability methods commonly employed in bioimaging: attribution maps (Backpropagation, GradCAM++, Layerwise Relevance Propagation), and latent space interpretation (t-SNE, UMAP, TriMAP, PaCMAP). We evaluated the interpretations using different literature frameworks: evaluation of attribution maps with imaging biomarkers and region perturbation, and preservation of data local and global structure of the latent space. Results suggested that we are not able to observe a clear relationship between the PET signal and attribution maps, highlighting the importance of not assuming that XAI explanations should reflect the human's reasoning. Layerwise Relevance Propagation best explains the classifier's decisions according to the region-perturbation evaluation, confirming literature results. Finally, the UMAP and the TriMAP embedding respectively reported the best result for the preservation of the local and the global data structure, which is, to the best of our knowledge, the first systematic assessment in the medical imaging domain, and in line with theoretical background of the methods employed.
引用
收藏
页码:558 / 581
页数:24
相关论文
共 50 条
  • [21] BRAIN 18F-FDG PET/CT ABNORMALITIES IN NEURO-BEHCET'S DISEASE
    Ursini, F.
    Chiaravalloti, A.
    D'Angelo, S.
    Padula, A.
    Gilio, M.
    Leccese, P.
    Naty, S.
    Grembiale, R. D.
    Sannino, P.
    Di Giorgio, E.
    Schillaci, O.
    Olivieri, I
    CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 2016, 34 (06) : S180 - S180
  • [22] Early Diagnosis of Alzheimer's Disease Using 18F-FDG PET With Soften Latent Representation
    Rehman, Abdul
    Yi, Myung-Kyu
    Majeed, Abdul
    Hwang, Seong Oun
    IEEE ACCESS, 2024, 12 : 87923 - 87933
  • [23] Sleep Dysregulation Is Associated with 18F-FDG PET and Cerebrospinal Fluid Biomarkers in Alzheimer's Disease
    Fernandes, Mariana
    Chiaravalloti, Agostino
    Nuccetelli, Marzia
    Placidi, Fabio
    Izzi, Francesca
    Camedda, Riccardo
    Bernardini, Sergio
    Sancesario, Giuseppe
    Schillaci, Orazio
    Mercuri, Nicola Biagio
    Liguori, Claudio
    JOURNAL OF ALZHEIMERS DISEASE REPORTS, 2023, 7 (01) : 845 - 854
  • [24] Role of 18F-FDG PET in the diagnosis of Rasmussen's disease
    Ochoa-Figueroa, M. A.
    Cardenas-Negro, C.
    Allende-Riera, A.
    Martinez-Gimeno, E.
    DeSequera-Rahola, M.
    Una-Gorospe, J.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2012, 31 (05): : 286 - 287
  • [25] Pitfalls of 18F-FDG PET for evaluating myocardial viability
    Osamu Manabe
    Noriko Oyama-Manabe
    Masanao Naya
    Tadao Aikawa
    Mamoru Sakakibara
    Hiroyuki Tsutsui
    Nagara Tamaki
    Journal of Nuclear Cardiology, 2017, 24 : 1110 - 1113
  • [26] Pitfalls of 18F-FDG PET for evaluating myocardial viability
    Manabe, Osamu
    Oyama-Manabe, Noriko
    Naya, Masanao
    Aikawa, Tadao
    Sakakibara, Mamoru
    Tsutsui, Hiroyuki
    Tamaki, Nagara
    JOURNAL OF NUCLEAR CARDIOLOGY, 2017, 24 (03) : 1110 - 1113
  • [27] 18F-FDG PET imaging analysis for computer aided Alzheimer's diagnosis
    Illan, I. A.
    Gorriz, J. M.
    Ramirez, J.
    Salas-Gonzalez, D.
    Lopez, M. M.
    Segovia, F.
    Chaves, R.
    Gomez-Rio, M.
    Puntonet, C. G.
    INFORMATION SCIENCES, 2011, 181 (04) : 903 - 916
  • [28] Brain 18F-FDG PET analysis via interval-valued reconstruction: proof of concept for Alzheimer’s disease diagnosis
    Florentin Kucharczak
    Marie Suau
    Olivier Strauss
    Fayçal Ben Bouallègue
    Denis Mariano-Goulart
    Annals of Nuclear Medicine, 2020, 34 : 565 - 574
  • [29] Brain 18F-FDG PET for Clinical Dementia Workup: Differential Diagnosis of Alzheimer's Disease and Other Types of Dementing Disorders
    Minoshima, Satoshi
    Mosci, Karina
    Cross, Donna
    Thientunyakit, Tanyaluck
    SEMINARS IN NUCLEAR MEDICINE, 2021, 51 (03) : 230 - 240
  • [30] Increased 18F-FDG uptake in degenerative disease of the spine:: Characterization with 18F-FDG PET/CT
    Rosen, Ron S.
    Fayad, Laura
    Wahl, Richard L.
    JOURNAL OF NUCLEAR MEDICINE, 2006, 47 (08) : 1274 - 1280