Evaluating Explanations of an Alzheimer's Disease 18F-FDG Brain PET Black-Box Classifier

被引:0
|
作者
De Santi, Lisa Anita [1 ,2 ]
Bargagna, Filippo [1 ,2 ]
Santarelli, Maria Filomena [3 ]
Positano, Vincenzo [1 ,2 ]
机构
[1] Univ Pisa, Dept Informat Engn, Pisa, Italy
[2] Fdn G Monasterio CNR Reg Toscana, UOC Bioingn, Pisa, Italy
[3] CNR Inst Clin Physiol, Pisa, Italy
关键词
Medical Imaging; Black-box DL; Posthoc Explanations; Attribution Maps; Latent Space Interpretation; Evaluating XAI; DIAGNOSIS; DEMENTIA;
D O I
10.1007/978-3-031-44064-9_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
eXplainable Artificial Intelligence (XAI) has been increasingly applied to interpret Deep Neural Networks (DNN) in medical imaging applications, but a general consensus about the best interpretation strategy is missing. This is also due to the absence of a validated framework to assess the quality of the explanations/interpretations produced by different XAI methods. This work aims to quantify the ability of interpretation techniques of producing good explanations and non-misleading representations of what a black-box model has learned. We selected a DNN which classifies 18F-FDG PET images according to the cognitive decline in Alzheimer's disease, and we applied two different interpretability methods commonly employed in bioimaging: attribution maps (Backpropagation, GradCAM++, Layerwise Relevance Propagation), and latent space interpretation (t-SNE, UMAP, TriMAP, PaCMAP). We evaluated the interpretations using different literature frameworks: evaluation of attribution maps with imaging biomarkers and region perturbation, and preservation of data local and global structure of the latent space. Results suggested that we are not able to observe a clear relationship between the PET signal and attribution maps, highlighting the importance of not assuming that XAI explanations should reflect the human's reasoning. Layerwise Relevance Propagation best explains the classifier's decisions according to the region-perturbation evaluation, confirming literature results. Finally, the UMAP and the TriMAP embedding respectively reported the best result for the preservation of the local and the global data structure, which is, to the best of our knowledge, the first systematic assessment in the medical imaging domain, and in line with theoretical background of the methods employed.
引用
收藏
页码:558 / 581
页数:24
相关论文
共 50 条
  • [1] 18F-FDG and Amyloid PET imaging in Alzheimer's Disease
    Chiaravalloti, Agostino
    Schillaci, Orazio
    JOURNAL OF ALZHEIMERS DISEASE, 2012, 29 : 13 - 15
  • [2] Contrastive Learning for Prediction of Alzheimer's Disease Using Brain 18F-FDG PET
    Chen, Yonglin
    Wang, Huabin
    Zhang, Gong
    Liu, Xiao
    Huang, Wei
    Han, Xianjun
    Li, Xuejun
    Martin, Melanie
    Tao, Liang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (04) : 1735 - 1746
  • [3] Gender differences in brain reserveAn 18F-FDG PET study in Alzheimer's disease
    R. Perneczky
    A. Drzezga
    J. Diehl-Schmid
    Y. Li
    A. Kurz
    Journal of Neurology, 2007, 254 : 1395 - 1400
  • [4] Gender differences in brain reserve -: An 18F-FDG PET study in Alzheimer's disease
    Perneczky, Robert
    Drzezga, Alexander
    Diehl-Schmid, Janine
    Li, Yi
    Kurz, Alexander
    JOURNAL OF NEUROLOGY, 2007, 254 (10) : 1395 - 1400
  • [5] The study of the diagnosis of Alzheimer's disease using 18F-FDG PET
    Wang, L. J.
    Zheng, Z. P.
    Tang, A. W.
    JOURNAL OF ALZHEIMERS DISEASE, 2002, 4 (01) : 66 - 66
  • [6] Global brain 18F-Florbetapir and 18F-FDG PET measurement comparison in diagnosis of Alzheimer's disease
    Khosravi, Mohsen
    Newberg, Andrew
    Shamchi, Sara Pourhassan
    Serruya, Mijail
    Wintering, Nancy
    Taghvaei, Raheleh
    Werner, Thomas
    Alavi, Abass
    JOURNAL OF NUCLEAR MEDICINE, 2017, 58
  • [7] 18F-FDG PET brain images as features for Alzheimer classification
    Azmi, M. H.
    Saripan, M. I.
    Nordin, A. J.
    Saad, F. F. Ahmad
    Aziz, S. A. Abdul
    Adnan, W. A. Wan
    RADIATION PHYSICS AND CHEMISTRY, 2017, 137 : 135 - 143
  • [8] The metabolic amyloid signature of 18F-FDG PET/CT in Alzheimer's disease
    Pacella, S.
    Isella, V.
    Preza, E.
    Polonia, V.
    Franchini, A.
    Crivellaro, C.
    Landoni, C.
    Guerra, L.
    Ferrarese, C.
    Formenti, A.
    Musarra, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S516 - S516
  • [9] 18F-FDG PET in Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment
    Deleva, N.
    Dimitrov, I.
    Ivanov, B.
    Klisarova, A.
    Bochev, P.
    NEUROSONOLOGY AND CEREBRAL HEMODYNAMICS, 2011, 7 (01): : 19 - 27
  • [10] Concordance between brain 18F-FDG PET and cerebrospinal fluid biomarkers in diagnosing Alzheimer's disease
    Rubi, S.
    Noguera, A.
    Tarongi, S.
    Oporto, M.
    Garcia, A.
    Vico, H.
    Espino, A.
    Picado, M. J.
    Mas, A.
    Pena, C.
    Amer, G.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2018, 37 (01): : 3 - 8