Ab initio study of helium behavior near stacking faults in 3C-SiC

被引:1
|
作者
Wang, Rongshan [1 ,2 ]
Zhang, Limin [1 ,2 ]
Jiang, Weilin [3 ]
Daghbouj, Nabil [4 ]
Polcar, Tomas [4 ]
Ejaz, Ahsan [1 ,2 ]
Wang, Zhiqiang [1 ,2 ]
Chen, Liang [1 ,2 ]
Wang, Tieshan [1 ,2 ]
机构
[1] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Frontiers Sci Ctr Rare Isotopes, Lanzhou 730000, Gansu, Peoples R China
[3] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[4] Czech Tech Univ, Fac Elect Engn, Dept Control Engn, Prague 16000, Czech Republic
基金
中国国家自然科学基金;
关键词
3C-SiC; stacking faults; helium behavior; first-principles calculations; ELASTIC BAND METHOD; SILICON-CARBIDE; SINGLE-CRYSTAL; DEFECTS; RESISTANCE; EVOLUTION; AMORPHIZATION; IMPLANTATION; CLUSTERS; ATOMS;
D O I
10.1088/1361-6463/ad6576
中图分类号
O59 [应用物理学];
学科分类号
摘要
First-principles calculations are used to investigate the effects of stacking faults (SFs) on helium trapping and diffusion in cubic silicon carbon (3C-SiC). Both extrinsic and intrinsic SFs in 3C-SiC create a hexagonal stacking sequence. The hexagonal structure is found to be a strong sink of a helium interstitial. Compared to perfect 3C-SiC, the energy barriers for helium migration near the SFs increase significantly, leading to predominant helium diffusion between the SFs in two dimensions. This facilitates the migration of helium towards interface traps, as confirmed by previous experimental reports on the nanocrystalline 3C-SiC containing a high density of SFs. This study also reveals that the formation of helium interstitial clusters near the SFs is not energetically favored. The findings from this study enhance our comprehension of helium behavior in faulted 3C-SiC, offering valuable insights for the design of helium-tolerant SiC materials intended for reactor applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Ab initio calculations of 3C-SiC(111)/Ti polar interfaces
    Tanaka, S
    Kohyama, M
    GRAIN BOUNDARY ENGINEERING IN CERAMICS - FROM GRAIN BOUNDARY PHENOMENA TO GRAIN BOUNDARY QUANTUM STRUCTURES, 2000, 118 : 63 - 70
  • [22] Ab initio electronic structure calculation of vanadium impurity in 3C-SiC
    Yuryeva, E.I.
    Ivanovskii, A.L.
    Reshanov, S.A.
    Parfenova, I.I.
    Journal of Wide Bandgap Materials, 2000, 8 (02): : 115 - 121
  • [23] Optical Properties of Ni doped 3C-SiC with ab initio calculations
    Houmad, M.
    Abbassi, A.
    Benyoussef, A.
    Ez-Zahraouy, H.
    El Kenz, A.
    2014 INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2014, : 596 - 600
  • [24] Ab initio calculations of 3C-SiC(111)/Ti polar interfaces
    Tanaka, S
    Kohyama, M
    SIMC-XI: 2000 INTERNATIONAL SEMICONDUCTING AND INSULATING MATERIALS CONFERENCE, PROCEEDINGS, 2000, : 299 - 302
  • [25] Theoretical study of helium insertion and diffusion in 3C-SiC
    Van Ginhoven, RM
    Chartier, A
    Meis, C
    Weber, WJ
    Corrales, LR
    JOURNAL OF NUCLEAR MATERIALS, 2006, 348 (1-2) : 51 - 59
  • [26] Ab initio study of the migration of intrinsic defects in 3C-SiC -: art. no. 205201
    Bockstedte, M
    Mattausch, A
    Pankratov, O
    PHYSICAL REVIEW B, 2003, 68 (20)
  • [27] Ab initio study of the effect of doping on stacking faults in GaN
    Chisholm, JA
    Bristowe, PD
    JOURNAL OF CRYSTAL GROWTH, 2001, 230 (3-4) : 432 - 437
  • [28] Ultraviolet-visible light photoluminescence induced by stacking faults in 3C-SiC nanowires
    Yu, Hailing
    Wang, Qiang
    Yang, Lei
    Dai, Bing
    Zhu, Jiaqi
    Han, Jeicai
    NANOTECHNOLOGY, 2019, 30 (23)
  • [29] 'Switch-back epitaxy' as a novel technique for reducing stacking faults in 3C-SiC
    Yagi, Kuniaki
    Kawahara, Takamitsu
    Hatta, Naoki
    Nagasawa, Hiroyuki
    SILICON CARBIDE AND RELATED MATERIALS 2005, PTS 1 AND 2, 2006, 527-529 : 291 - +
  • [30] Ab-initio modeling of oxygen on the surface passivation of 3C-SiC nanostructures
    Cuevas, J. L.
    Trejo, A.
    Calvino, M.
    Carvajal, E.
    Cruz-Irisson, M.
    APPLIED SURFACE SCIENCE, 2012, 258 (21) : 8360 - 8365