On dissipation timescales of the basic second-order moments: the effect on the energy and flux budget (EFB) turbulence closure for stably stratified turbulence

被引:1
|
作者
Kadantsev, Evgeny [1 ,2 ]
Mortikov, Evgeny [3 ,4 ,5 ]
Glazunov, Andrey [3 ,4 ]
Kleeorin, Nathan [6 ,7 ]
Rogachevskii, Igor [6 ,8 ,9 ]
机构
[1] Finnish Meteorol Inst, Helsinki 00101, Finland
[2] Univ Helsinki, Inst Atmospher & Earth Syst Res Phys, Fac Sci, Helsinki 00014, Finland
[3] Lomonosov Moscow State Univ, Res Comp Ctr, Moscow 117192, Russia
[4] Russian Acad Sci, Inst Numer Math, Moscow 119991, Russia
[5] Moscow Ctr Fundamental & Appl Math, Moscow 117192, Russia
[6] Ben Gurion Univ Negev, Dept Mech Engn, POB 653, IL-8410530 Beer Sheva, Israel
[7] Russian Acad Sci, Pushkov Inst Terr Magnetism Ionosphere & Radio Wav, Moscow 108840, Troitsk, Russia
[8] Stockholm Univ, Nordita, S-10691 Stockholm, Sweden
[9] KTH Royal Inst Technol, Stockholm, Sweden
基金
欧盟地平线“2020”;
关键词
FINITE-DIFFERENCE SCHEMES; PART I; MODEL; FLOWS; SHEAR;
D O I
10.5194/npg-31-395-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The dissipation rates of the basic second-order moments are the key parameters playing a vital role in turbulence modelling and controlling turbulence energetics and spectra and turbulent fluxes of momentum and heat. In this paper, we use the results of direct numerical simulations (DNSs) to evaluate dissipation rates of the basic second-order moments and revise the energy and flux budget (EFB) turbulence closure theory for stably stratified turbulence. We delve into the theoretical implications of this approach and substantiate our closure hypotheses through DNS data. We also show why the concept of down-gradient turbulent transport becomes incomplete when applied to the vertical turbulent flux of potential temperature under stable stratification. We reveal essential feedback between the turbulent kinetic energy (TKE), the vertical turbulent flux of buoyancy, and the turbulent potential energy (TPE), which is responsible for maintaining shear-produced stably stratified turbulence for any Richardson number.
引用
收藏
页码:395 / 408
页数:14
相关论文
共 50 条
  • [21] Propagation of second-order moments of general truncated beams in atmospheric turbulence
    Ji, Xiaoling
    Li, Xiaoqing
    Ji, Guangming
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [22] Analysis of second-order moments in surface layer turbulence in an Alpine valley
    de Franceschi, M.
    Zardi, D.
    Tagliazucca, M.
    Tampieri, F.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (644) : 1750 - 1765
  • [23] A Numerical Study of Second-Order Turbulent Moments in the Stably Stratified Nocturnal Boundary Layer
    朱平
    许小金
    李兴生
    Advances in Atmospheric Sciences, 1992, (02) : 201 - 212
  • [24] Principal length scales in second-order closure models for canopy turbulence
    Katul, GG
    Chang, WH
    JOURNAL OF APPLIED METEOROLOGY, 1999, 38 (11): : 1631 - 1643
  • [25] A new second-order turbulence closure scheme for the planetary boundary layer
    Abdella, K
    McFarlane, N
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1997, 54 (14) : 1850 - 1867
  • [26] Aerodynamic analysis of turbine cascade by using a second-order closure of turbulence
    Univ of Wisconsin-Milwaukee, Milwaukee, United States
    Int J Heat Fluid Flow, 3 (276-282):
  • [27] Energy conservation and second-order statistics in stably stratified turbulent boundary layers
    Victor S. L’vov
    Itamar Procaccia
    Oleksii Rudenko
    Environmental Fluid Mechanics, 2009, 9 : 267 - 295
  • [28] Energy conservation and second-order statistics in stably stratified turbulent boundary layers
    L'vov, Victor S.
    Procaccia, Itamar
    Rudenko, Oleksii
    ENVIRONMENTAL FLUID MECHANICS, 2009, 9 (03) : 267 - 295
  • [29] Shearless turbulence - wall interaction: a DNS database for second-order closure modeling
    Bodart, J.
    Joly, L.
    Cazalbou, J. -B.
    DIRECT AND LARGE-EDDY SIMULATION VIII, 2011, 15 : 45 - 50
  • [30] Comments on "A new second-order turbulence closure scheme for the planetary boundary layer"
    Mironov, DV
    Gryanik, VM
    Lykossov, VN
    Zilitinkevich, SS
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1999, 56 (19) : 3478 - 3481