Wasserstein generative adversarial networks for topology optimization

被引:0
|
作者
Pereira, Lucas [1 ]
Driemeier, Larissa [1 ]
机构
[1] Univ Sao Paulo, Polytech Sch, Dept Mechatron Engn & Mech Syst, Ave Prof Mello Moraes 2231, BR-05508030 Sao Paulo, SP, Brazil
关键词
Finite element method; Machine learning; Generative adversarial network; Topology optimization;
D O I
10.1016/j.istruc.2024.106924
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The finite element method (FEM) is a well known approach to solve partial differential equations. It has important applications in structural engineering, such as in topology optimization (TO). TO involves, at each iteration, the solution of structural problems via FEM, which can add up to a high computational cost. Therefore, a line of research to accelerate TO emerged over the years focusing on machine learning (ML) approaches. Particularly, Artificial Neural Networks (ANNs) have been proposed to significantly speed-up the process by eliminating the iterative algorithm, which is intrinsic to TO. Since ANN is a supervised ML method, first a dataset is generated, containing finite element analysis (FEA) inputs, volume fraction, post-processing, and final topologies. Then, with the Wasserstein Generative Adversarial Networks (WGANs) is trained on this dataset to map fields of physical quantities, such as the von Mises stress, to the final optimized structure. The final designs obtained via ML are quantitatively analyzed according to the metrics.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Generative adversarial networks based on Wasserstein distance for knowledge graph embeddings
    Dai, Yuanfei
    Wang, Shiping
    Chen, Xing
    Xu, Chaoyang
    Guo, Wenzhong
    KNOWLEDGE-BASED SYSTEMS, 2020, 190
  • [22] Secure Steganography Based on Wasserstein Generative Adversarial Networks with Gradient Penalty
    Ren, Fang
    Wang, Yiyuan
    Zhu, Tingge
    Gao, Bo
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 310 - 314
  • [23] Wasserstein Generative Adversarial Networks for Realistic Traffic Sign Image Generation
    Dewi, Christine
    Chen, Rung-Ching
    Liu, Yan-Ting
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 479 - 493
  • [24] Enhancing the Classification of EEG Signals using Wasserstein Generative Adversarial Networks
    Petrutiu, Vlad Mihai
    Palcu, Liana Daniela
    Lemnaur, Camelia
    Dinsoreanu, Mihaela
    Potolea, Rodica
    Mursesan, Raul
    Moca, Vlad Vasile
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2020), 2020, : 29 - 34
  • [25] Generative Design by Embedding Topology Optimization into Conditional Generative Adversarial Network
    Wang, Zhichao
    Melkote, Shreyes
    Rosen, David W.
    JOURNAL OF MECHANICAL DESIGN, 2023, 145 (11)
  • [26] Stable Parallel Training of Wasserstein Conditional Generative Adversarial Neural Networks
    Pasini, Massimiliano Lupo
    Yin, Junqi
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 1 - 7
  • [27] Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks
    Li, Jianbin
    Chen, Zhiqiang
    Cheng, Long
    Liu, Xiufeng
    ENERGY, 2022, 257
  • [28] Semantic Image Inpainting through Improved Wasserstein Generative Adversarial Networks
    Vitoria, Patricia
    Sintes, Joan
    Ballester, Coloma
    VISAPP: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4, 2019, : 249 - 260
  • [29] Speech Enhancement Based on A New Architecture of Wasserstein Generative Adversarial Networks
    Ye, Shuaishuai
    Jiang, Ting
    Qin, Shan
    Zou, Weixia
    Deng, Chengyun
    2018 11TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2018, : 399 - 403
  • [30] Moving target ghost imaging based on wasserstein generative adversarial networks
    Ge, Haoyu
    Yin, Longfei
    Cui, Xikang
    Zhu, Lingyun
    Chen, Lei
    Wu, Guohua
    OPTICS AND LASER TECHNOLOGY, 2025, 184