Oxy-fuel co-combustion properties and N-containing pollutants release characteristics of biomass/coal blends

被引:0
|
作者
Huang, Jiangang [1 ,2 ,3 ,4 ]
Zhang, Jinzhi [1 ,3 ,4 ]
Chen, Tianju [1 ,3 ,4 ]
Yellezuome, Dominic [5 ]
Zhao, Ruidong [1 ,3 ,4 ]
Wu, Jinhu [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Key Lab Biofuels, 189 Songling Rd, Qingdao 266101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Shandong Energy Inst, 189 Songling Rd, Qingdao 266101, Peoples R China
[4] Qingdao New Energy Shandong Lab, 189 Songling Rd, Qingdao 266101, Peoples R China
[5] Shanghai Jiao Tong Univ, Biomass Energy Engn Res Ctr, Sch Agr & Biol, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
关键词
Thermal properties; Oxy-fuel co-combustion; NO release; Biomass; Shenmu coal; NITROGEN TRANSFORMATION; NOX PRECURSORS; COAL; COMBUSTION; PYROLYSIS; CONVERSION; EMISSIONS; BED;
D O I
10.1016/j.joei.2024.101800
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal properties and NO release characteristics during oxy-fuel co-combustion of pine sawdust (PS) and Shenmu coal (SM) were investigated based on the effects of various parameters, including atmosphere, temperature, blending ratio, and oxygen concentration in this research. The results indicate that the release of NO decreased with the increasing temperature during decomposition process of PS and SM. The content of N-Q and N-X in semicoke (SC) increased at higher torrefaction temperature. The N-Q and N-X content for SC at the temperature of 1000 degrees C was 36.9 % and 23.2 %, respectively. When 40% PS was added to the SM, the NO release amount was significantly reduced by 16.3-23.1 % in the oxy-fuel atmosphere compared to the O2/N2 atmosphere, and the ignition time was reduced from 4.0s to 0.66s. The NO emission initially increased and then decreased as the combustion temperature increased from 800 to 1000 degrees C. Furthermore, increasing the oxygen concentration from 10 % to 40 % shortens the combustion time and increases the emissions of NO. Conversely, increasing PS blending ratios from 10 % to 40 % decreased NO emission and the conversion ratio. These findings emphasize that adding biomass can effectively improve coal ignition, increase combustion rates, reduce NO emissions, and address the air pollution problems associated with NOx emissions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Influence of biomass blends on the particle temperature and burnout characteristics during oxy-fuel co-combustion of coal
    Issac, Miriam
    De Girolamo, Anthony
    Dai, Baigian
    Hosseini, Tahereh
    Zhang, Lian
    [J]. JOURNAL OF THE ENERGY INSTITUTE, 2020, 93 (01) : 1 - 14
  • [2] Oxy-fuel combustion of coal and biomass blends
    Riaza, J.
    Gil, M. V.
    Alvarez, L.
    Pevida, C.
    Pis, J. J.
    Rubiera, F.
    [J]. ENERGY, 2012, 41 (01) : 429 - 435
  • [3] Study on the oxy-fuel co-combustion of coal gangue and semicoke and the pollutants emission characteristics
    Dai, Ruo-Wei
    Zhao, Rui-Dong
    Wang, Zhi-Qi
    Qin, Jian-Guang
    Chen, Tian-Ju
    Wu, Jin-Hu
    [J]. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2022, 50 (02): : 152 - 159
  • [4] Combustion characteristics and synergy behaviors of biomass and coal blending in oxy-fuel conditions: A single particle co-combustion method
    Rui Zhang
    Kai Lei
    BuQing Ye
    Jin Cao
    Dong Liu
    [J]. Science China Technological Sciences, 2018, 61 : 1723 - 1731
  • [5] Combustion characteristics and synergy behaviors of biomass and coal blending in oxy-fuel conditions: A single particle co-combustion method
    Zhang Rui
    Lei Kai
    Ye BuQing
    Cao Jin
    Liu Dong
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2018, 61 (11) : 1723 - 1731
  • [6] Combustion characteristics and synergy behaviors of biomass and coal blending in oxy-fuel conditions: A single particle co-combustion method
    ZHANG Rui
    LEI Kai
    YE BuQing
    CAO Jin
    LIU Dong
    [J]. Science China(Technological Sciences)., 2018, 61 (11) - 1731
  • [7] Combustion characteristics and synergy behaviors of biomass and coal blending in oxy-fuel conditions: A single particle co-combustion method
    ZHANG Rui
    LEI Kai
    YE BuQing
    CAO Jin
    LIU Dong
    [J]. Science China Technological Sciences, 2018, (11) : 1723 - 1731
  • [8] Thermal conversion property and NO emission characteristics of oxy-fuel co-combustion of biomass and semicoke
    Huang, Jiangang
    Zhang, Jinzhi
    Feng, Yutong
    Yellezuome, Dominic
    Zhang, Zihao
    Zhao, Ruidong
    Chen, Tianju
    Wu, Jinhu
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (24) : 14109 - 14121
  • [9] Thermal conversion property and NO emission characteristics of oxy-fuel co-combustion of biomass and semicoke
    Jiangang Huang
    Jinzhi Zhang
    Yutong Feng
    Dominic Yellezuome
    Zihao Zhang
    Ruidong Zhao
    Tianju Chen
    Jinhu Wu
    [J]. Journal of Thermal Analysis and Calorimetry, 2023, 148 : 14109 - 14121
  • [10] RESEARCH ON CO-COMBUSTION OF SEWAGE SLUDGE AND COAL IN OXY-FUEL CONDITIONS
    Bien, Jurand D.
    Bien, Beata
    Czakiert, Tomasz
    [J]. ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A, 2019, 26 (1-2): : 7 - 18