A robust cut-cell finite element method for Poisson's equation in three dimensions

被引:0
|
作者
Li, Donghao [1 ]
Papadopoulos, Panayiotis [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
Cartesian grid; cut cell; finite element method; Poisson's equation; rate of convergence; small-cell problem; EMBEDDED-BOUNDARY METHOD; EXTENSION;
D O I
10.1002/nme.7577
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article documents a cut-cell finite element method for solving Poisson's equation in smooth three-dimensional domains using a uniform, Cartesian axis-aligned grid. Neumann boundary conditions are imposed weakly by way of a Delaunay triangulation, while Dirichlet boundary conditions are imposed strongly using a projection method. A set of numerical simulations demonstrates the proposed method is robust and preserves the asymptotic rate of convergence expected of corresponding body-fitted methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] The Fourier-finite-element method for Poisson's equation in axisymmetric domains with edges
    Heinrich, B
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) : 1885 - 1911
  • [12] An efficient second-order accurate cut-cell method for solving the variable coefficient Poisson equation with jump conditions on irregular domains
    Ji, Hua
    Lien, Fue-Sang
    Yee, Eugene
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 52 (07) : 723 - 748
  • [13] A Cut-Cell Polyhedral Finite Element Model for Coupled Fluid Flow and Mechanics in Fractured Reservoirs
    Shovkun, I
    Tchelepi, H. A.
    SPE JOURNAL, 2022, 27 (02): : 1221 - 1243
  • [14] An ocean model using cut-cell method
    Oikawa, Masamichi
    Kyozuka, Yusaku
    OCEANS 2006 - ASIA PACIFIC, VOLS 1 AND 2, 2006, : 657 - 664
  • [15] Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes
    Tao, Michael
    Batty, Christopher
    Fiume, Eugene
    Levin, David I. W.
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (06):
  • [16] A cut-cell finite volume - finite element coupling approach for fluid-structure interaction in compressible flow
    Pasquariello, Vito
    Hammerl, Georg
    Oerley, Felix
    Hickel, Stefan
    Danowski, Caroline
    Popp, Alexander
    Wall, Wolfgang A.
    Adams, Nikolaus A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 670 - 695
  • [17] A Mixed Finite Element Method for Elasticity in Three Dimensions
    Scot Adams
    Bernardo Cockburn
    Journal of Scientific Computing, 2005, 25 : 515 - 521
  • [18] A mixed finite element method for elasticity in three dimensions
    Adams, S
    Cockburn, B
    JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (03) : 515 - 521
  • [19] A Comparison of Finite Element Error Bounds for Poisson's Equation
    Barnhill, R.E.
    Brown, J.H.
    Mitchell, A.R.
    1600, Oxford University Press (01):
  • [20] The finite volume element methods for Poisson equation based on Adini's element
    Yu, Changhua
    Wang, Yanhe
    Li, Yonghai
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5537 - 5549