MARNet: Multi-head attention residual network for rolling bearing fault diagnosis under noisy condition

被引:0
|
作者
Deng, Linfeng [1 ]
Wang, Guojun [1 ]
Zhao, Cheng [1 ]
Zhang, Yuanwen [1 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearing; fault diagnosis; noisy condition; attention mechanism; residual network;
D O I
10.1177/09544062241259614
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Rolling bearings are crucial components of rotating machinery, and their health states directly affect the overall performance of the machinery. Therefore, it is exceedingly necessary to detect and diagnose bearing faults. Numerous bearing fault diagnosis methods have been successfully used for ensuring the safe operation of rotating machinery. However, in practical working environments, there is a considerable amount of noise, resulting in traditional methods incapable of achieving accurate fault diagnosis. This paper proposes a new multi-head attention residual network (MARNet) for rolling bearing fault diagnosis under noisy condition. MARNet optimizes residual units by simplifying multi-layer convolutions into a single-layer convolution and replaces the rectified linear unit (ReLU) function with the exponential linear unit (ELU) function to obtain a more appropriate activation function. Additionally, the multi-head attention mechanism is introduced into the residual block to capture correlation information between any two time sequences, enhancing the network's feature extraction capability. The effectiveness and superiority of the MARNet in noisy environments are demonstrated through conducting the two bearing datasets from Case Western Reserve University (CWRU) and Paderborn University (PU). The experiment results show that the proposed method exhibits anti-noise characteristics and generalization capability compared with several up-to-date deep learning methods for fault diagnosis of rolling bearings.
引用
收藏
页码:9726 / 9747
页数:22
相关论文
共 50 条
  • [41] Rolling Bearing Fault Diagnosis Method Based on Attention CNN and BiLSTM Network
    Guo, Yurong
    Mao, Jian
    Zhao, Man
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 3377 - 3410
  • [42] Fault diagnosis of rolling bearing based on adaptive attention network and federated learning
    Zheng, Bowen
    Wu, Dinghui
    Fan, Junyan
    Du, Kangning
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [43] Fault diagnosis of rolling bearing based on multi-scale and attention mechanism
    Ding, Xue
    Deng, Aidong
    Li, Jing
    Deng, Minqiang
    Xu, Shuo
    Shi, Yaowei
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2022, 52 (01): : 172 - 178
  • [44] Semi-supervised few-shot fault diagnosis driven by multi-head dynamic graph attention network under speed fluctuations
    Jiang, Li
    Wang, Shuaiyu
    Zhang, Tianao
    Wang, Lei
    Li, Yibing
    Zhang, Xin
    DIGITAL SIGNAL PROCESSING, 2024, 151
  • [45] Parkinson's severity diagnosis explainable model based on 3D multi-head attention residual network
    Huang, Jiehui
    Lin, Lishan
    Yu, Fengcheng
    He, Xuedong
    Song, Wenhui
    Lin, Jiaying
    Tang, Zhenchao
    Yuan, Kang
    Li, Yucheng
    Huang, Haofan
    Pei, Zhong
    Xian, Wenbiao
    Chen, Calvin Yu-Chian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [46] Rolling Bearing RUL Prediction Based on Fusion of Multi-Head Attention and Improved TCN-BiLSTM
    Guo, Yuan
    Zhou, Jun
    Dong, Zhenbiao
    She, Huan
    Xu, Weijia
    IEEE ACCESS, 2024, 12 : 95641 - 95658
  • [47] Remaining useful life prediction for bearing based on automatic feature combination extraction and residual multi-Head attention GRU network
    He, Jiawen
    Zhang, Xu
    Zhang, Xuechang
    Shen, Jie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [48] Dual-path multi-scale attention residual network for fault diagnosis of rolling bearings under complex operating conditions
    Deng, Linfeng
    Zhang, Yuanwen
    Zhao, Cheng
    Wang, Guojun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (08)
  • [49] Intelligent Fault Diagnosis of Rolling Bearing Based on Gramian Angular Difference Field and Improved Dual Attention Residual Network
    Tong, Anshi
    Zhang, Jun
    Xie, Liyang
    SENSORS, 2024, 24 (07)
  • [50] Multi-scale residual neural network with enhanced gated recurrent unit for fault diagnosis of rolling bearing
    Liao, Weiqing
    Fu, Wenlong
    Yang, Ke
    Tan, Chao
    Huang, Yuguang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)