Modeling conductivity in percolating nanotube networks using parametric approaches

被引:0
|
作者
Zhydenko, I. [1 ,2 ]
Klym, H. [2 ]
Karbovnyk, I. [3 ]
Chalyy, D. [1 ]
机构
[1] Lviv State Univ Life Safety, Lvov, Ukraine
[2] Lviv Polytech Natl Univ, S Bandery Str,12, UA-79013 Lvov, Ukraine
[3] Ivan Franko Natl Univ Lviv, Lvov, Ukraine
关键词
conductivity; nanotubes; percolation; simulation; COMPOSITES;
D O I
10.1080/15421406.2024.2381290
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work focuses on conducting three-dimensional computer simulations to analyze the formation of nanotube networks within non-conductive volumes. The primary objective is to investigate the electrical properties of these model networks, taking into account a range of conductivity mechanisms. The outcomes of the simulations entail a comprehensive exploration of nanotube networks with diverse geometrical parameters, providing insights into their electrical behavior under varying conditions.
引用
收藏
页码:1137 / 1145
页数:9
相关论文
共 50 条
  • [41] Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks
    Papari, Mohammad M.
    Yousefi, Fakhri
    Moghadasi, Jalil
    Karimi, Hajir
    Campo, Antonio
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (01) : 44 - 52
  • [42] Frequency and temperature scaling of the conductivity in percolating fractal networks of carbon-black/polymer composites
    Brom, HB
    Adriaanse, LJ
    Teunissen, PAA
    Reedijk, JA
    Michels, MAJ
    BrokkenZijp, JCM
    SYNTHETIC METALS, 1997, 84 (1-3) : 929 - 930
  • [43] Thermal Conductivity Analysis of Single-Walled Carbon Nanotube Using Finite Element Modeling
    Hossain, Md. Prince
    Paul, Koushik
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME 2017), 2018, 1980
  • [44] Incorporating noise modeling in dynamic networks using non-parametric models
    Galrinho, Miguel
    Everitt, Niklas
    Hjalmarsson, Hakan
    IFAC PAPERSONLINE, 2017, 50 (01): : 10568 - 10573
  • [45] Modeling of drinking water distribution networks using deterministic and stochastic approaches
    Arreguin, Felipe I.
    Alcocer-Yamanaka, Victor H.
    Hernandez-Padron, Dante S.
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2010, 1 (04) : 119 - 136
  • [46] Investigation of Carbon Nanotube Networks Surface Conductivity in Sensor Structures
    Zakirov, Evgeny R.
    Efimov, Valery M.
    2019 20TH INTERNATIONAL CONFERENCE OF YOUNG SPECIALISTS ON MICRO/NANOTECHNOLOGIES AND ELECTRON DEVICES (EDM 2019), 2019, : 19 - 22
  • [47] Sonochemical optimization of the conductivity of single wall carbon nanotube networks
    Kaempgen, Martti
    Lebert, Michael
    Haluska, Miroslav
    Nicoloso, Norbert
    Roth, Siegmar
    ADVANCED MATERIALS, 2008, 20 (03) : 616 - 620
  • [48] Conductivity of AuCl4-Functionalized Carbon Nanotube Networks
    Ketolainen, T.
    Havu, V.
    Puska, M. J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (08): : 4627 - 4634
  • [49] Thermal conductivity of chirality-sorted carbon nanotube networks
    Lian, Feifei
    Llinas, Juan P.
    Li, Zuanyi
    Estrada, David
    Pop, Eric
    APPLIED PHYSICS LETTERS, 2016, 108 (10)
  • [50] Multiscale modeling of thermal conductivity of carbon nanotube epoxy nanocomposites
    Vahedi, Ali
    Lahidjani, Mohammad Homayoune Sadr
    Shakhesi, Saeed
    PHYSICA B-CONDENSED MATTER, 2018, 550 : 39 - 46