Hyperspectral reflectance and machine learning for multi-site monitoring of cotton growth

被引:3
|
作者
Flynn, K. Colton [1 ]
Witt, Travis W. [2 ]
Baath, Gurjinder S. [3 ]
Chinmayi, H. K. [1 ]
Smith, Douglas R. [1 ]
Gowda, Prasanna H. [4 ]
Ashworth, Amanda J. [5 ]
机构
[1] USDA ARS, Grassland Soil & Water Res Lab, 808 E Blackland Rd, Temple, TX 76502 USA
[2] USDA ARS, Oklahoma & Cent Plains Agr Res Ctr, 7207W Cheyenne St, El Reno, OK 73036 USA
[3] Texas A&M AgriLife Res, Blackland Res & Extens Ctr, 720 E Blackland Rd, Temple, TX 76502 USA
[4] USDA ARS, Southeast Area, 114 Expt Stn Rd, Stoneville, MS 38776 USA
[5] USDA ARS, Poultry Prod & Prod Safety Res, 1260W Maple St, Fayetteville, AR 72701 USA
来源
关键词
Remote sensing; Cotton; SVM; Random forest; CHIME; LEAF-AREA INDEX; CHLOROPHYLL METER; YIELD; NITROGEN; INFORMATION; ALGORITHMS; STRESS;
D O I
10.1016/j.atech.2024.100536
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Hyperspectral measurements can help with rapid decision-making and collecting data across multiple locations. However, there are multiple data processing methods (Savisky-Golay [SG], first derivative [FD], and normalization) and analyses (partial least squares regression [PLS], weighted k-nearest neighbor [KKNN], support vector machine [SVM], and random forest [RF]) that can be used to determine the best relationship between physical measurements and hyperspectral data. In the current study, FD was the best method for data processing and SVM was the best model for predicting average cotton (Gossypium spp. Malvaceae) height and nodes. However, the combination of FD and RF were best at predicting cotton leaf area index, canopy cover, and chlorophyll content across the growing season. Additionally, results from models developed by both SVM and RF were closely related to pseudo-CHIME satellite wavebands, where in-situ hyperspectral data were matched to the spectral resolutions of a future hyperspectral satellite. The information and results presented will aid producers and other members of the cotton industry to make rapid and meaningful decisions that could result in greater yield and sustainable intensification.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Multi-site On-chip Current Sensor for Electromigration Monitoring
    Wang, Tianhan
    Chen, Degang
    Geiger, Randall
    2011 IEEE 54TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2011,
  • [22] A Monitoring Framework for Multi-Site 5G Platforms
    Perez, Ramon
    Garcia-Reinoso, Jaime
    Zabala, Aitor
    Serrano, Pablo
    Banchs, Albert
    2020 EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS (EUCNC 2020), 2020, : 52 - 56
  • [23] Hyperspectral imaging and machine learning for monitoring produce ripeness
    Logan, Riley D.
    Scherrer, Bryan
    Senecal, Jacob
    Walton, Neil S.
    Peerlinck, Amy
    Sheppard, John W.
    Shaw, Joseph A.
    SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY XII, 2020, 11421
  • [24] Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors
    James T. Grist
    Stephanie Withey
    Christopher Bennett
    Heather E. L. Rose
    Lesley MacPherson
    Adam Oates
    Stephen Powell
    Jan Novak
    Laurence Abernethy
    Barry Pizer
    Simon Bailey
    Steven C. Clifford
    Dipayan Mitra
    Theodoros N. Arvanitis
    Dorothee P. Auer
    Shivaram Avula
    Richard Grundy
    Andrew C. Peet
    Scientific Reports, 11
  • [25] Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
    Belov, Vladimir
    Erwin-Grabner, Tracy
    Aghajani, Moji
    Aleman, Andre
    Amod, Alyssa R.
    Basgoze, Zeynep
    Benedetti, Francesco
    Besteher, Bianca
    Buelow, Robin
    Ching, Christopher R. K.
    Connolly, Colm G.
    Cullen, Kathryn
    Davey, Christopher G.
    Dima, Danai
    Dols, Annemiek
    Evans, Jennifer W.
    Fu, Cynthia H. Y.
    Gonul, Ali Saffet
    Gotlib, Ian H.
    Grabe, Hans J.
    Groenewold, Nynke
    Hamilton, J. Paul
    Harrison, Ben J.
    Ho, Tiffany C.
    Mwangi, Benson
    Jaworska, Natalia
    Jahanshad, Neda
    Klimes-Dougan, Bonnie
    Koopowitz, Sheri-Michelle
    Lancaster, Thomas
    Li, Meng
    Linden, David E. J.
    MacMaster, Frank P.
    Mehler, David M. A.
    Melloni, Elisa
    Mueller, Bryon A.
    Ojha, Amar
    Oudega, Mardien L.
    Penninx, Brenda W. J. H.
    Poletti, Sara
    Pomarol-Clotet, Edith
    Portella, Maria J.
    Pozzi, Elena
    Reneman, Liesbeth
    Sacchet, Matthew D.
    Saemann, Philipp G.
    Schrantee, Anouk
    Sim, Kang
    Soares, Jair C.
    Stein, Dan J.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [26] Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors
    Grist, James T.
    Withey, Stephanie
    Bennett, Christopher
    Rose, Heather E. L.
    MacPherson, Lesley
    Oates, Adam
    Powell, Stephen
    Novak, Jan
    Abernethy, Laurence
    Pizer, Barry
    Bailey, Simon
    Clifford, Steven C.
    Mitra, Dipayan
    Arvanitis, Theodoros N.
    Auer, Dorothee P.
    Avula, Shivaram
    Grundy, Richard
    Peet, Andrew C.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
    Vladimir Belov
    Tracy Erwin-Grabner
    Moji Aghajani
    Andre Aleman
    Alyssa R. Amod
    Zeynep Basgoze
    Francesco Benedetti
    Bianca Besteher
    Robin Bülow
    Christopher R. K. Ching
    Colm G. Connolly
    Kathryn Cullen
    Christopher G. Davey
    Danai Dima
    Annemiek Dols
    Jennifer W. Evans
    Cynthia H. Y. Fu
    Ali Saffet Gonul
    Ian H. Gotlib
    Hans J. Grabe
    Nynke Groenewold
    J Paul Hamilton
    Ben J. Harrison
    Tiffany C. Ho
    Benson Mwangi
    Natalia Jaworska
    Neda Jahanshad
    Bonnie Klimes-Dougan
    Sheri-Michelle Koopowitz
    Thomas Lancaster
    Meng Li
    David E. J. Linden
    Frank P. MacMaster
    David M. A. Mehler
    Elisa Melloni
    Bryon A. Mueller
    Amar Ojha
    Mardien L. Oudega
    Brenda W. J. H. Penninx
    Sara Poletti
    Edith Pomarol-Clotet
    Maria J. Portella
    Elena Pozzi
    Liesbeth Reneman
    Matthew D. Sacchet
    Philipp G. Sämann
    Anouk Schrantee
    Kang Sim
    Jair C. Soares
    Dan J. Stein
    Scientific Reports, 14
  • [28] Machine Learning of Infant Spontaneous Movements for the Early Prediction of Cerebral Palsy: A Multi-Site Cohort Study
    Ihlen, Espen A. F.
    Stoen, Ragnhild
    Boswell, Lynn
    de Regnier, Raye-Ann
    Fjortoft, Toril
    Gaebler-Spira, Deborah
    Labori, Cathrine
    Loennecken, Marianne C.
    Msall, Michael E.
    Moinichen, Unn I.
    Peyton, Colleen
    Schreiber, Michael D.
    Silberg, Inger E.
    Songstad, Nils T.
    Vagen, Randi T.
    Oberg, Gunn K.
    Adde, Lars
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (01)
  • [29] Combine Hyperspectral Imaging and Machine Learning to Identify the Age of Cotton Seeds
    Duan Long
    Yan Tian-ying
    Wang Jiang-li
    Ye Wei-xin
    Chen Wei
    Gao Pan
    Lu Xing
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41 (12) : 3857 - 3863
  • [30] Monitoring effects of heavy metal stress on biochemical and spectral parameters of cotton using hyperspectral reflectance
    Priya, Swati
    Ghosh, Ranendu
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (01)