CABnet: A channel attention dual adversarial balancing network for multimodal image fusion

被引:3
|
作者
Sun, Le [1 ]
Tang, Mengqi [1 ]
Muhammad, Ghulam [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Ctr Atmospher Environm & Equipment Technol CICAEET, Dept Jiangsu Collaborat Innovat, Nanjing 210044, Jiangsu, Peoples R China
[2] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
关键词
Image processing; Infrared and visible image fusion; Complementary information extract; Generative adversarial networks; Adaptive factor; ENSEMBLE;
D O I
10.1016/j.imavis.2024.105065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Infrared and visible image fusion aims to generate informative images by leveraging the distinctive strengths of infrared and visible modalities. These fused images play a crucial role in subsequent downstream tasks, including object detection, recognition, and segmentation. However, complementary information is often difficult to extract. Existing generative adversarial network-based methods generate fused images by modifying the distribution of source images' features to preserve instances and texture details in both infrared and visible images. Nevertheless, these approaches may result in a degradation of the fused image quality when the original image quality is low. Considering the balance of information from different modalities can improve the quality of the fused image. Hence, we introduce CABnet, a Channel Attention dual adversarial Balancing network. CABnet incorporates a channel attention mechanism to capture crucial channel features, thereby, enhancing complementary information. It also employs an adaptive factor to control the mixing distribution of infrared and visible images, which ensures the preservation of instances and texture details during the adversarial process. To enhance efficiency and reduce reliance on manual labeling, our training process adopts a semi-supervised learning strategy. Through qualitative and quantitative experiments across multiple datasets, CABnet surpasses existing state-of-the-art methods in fusion performance, notably achieving a 51.3% enhancement in signal to noise ratio and a 13.4% improvement in standard deviation.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] WAVELET CHANNEL ATTENTION MODULE WITH A FUSION NETWORK FOR SINGLE IMAGE DERAINING
    Yang, Hao-Hsiang
    Yang, Chao-Han Huck
    Wang, Yu-Chiang Frank
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 883 - 887
  • [22] Attention based dual UNET network for infrared and visible image fusion
    Wang, Xuejiao
    Hua, Zhen
    Li, Jinjiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (25) : 66959 - 66980
  • [23] Triple disentangled network with dual attention for remote sensing image fusion
    Zhang, Feng
    Yang, Guishuo
    Sun, Jiande
    Wan, Wenbo
    Zhang, Kai
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245
  • [24] A Dual Cross Attention Transformer Network for Infrared and Visible Image Fusion
    Zhou, Zhuozhi
    Lan, Jinhui
    2024 7TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA, ICAIBD 2024, 2024, : 494 - 499
  • [25] Dual-Channel Capsule Generation Adversarial Network for Hyperspectral Image Classification
    Wang, Jianing
    Guo, Siying
    Huang, Runhu
    Li, Linhao
    Zhang, Xiangrong
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [26] AT-GAN: A generative adversarial network with attention and transition for infrared and visible image fusion
    Rao, Yujing
    Wu, Dan
    Han, Mina
    Wang, Ting
    Yang, Yang
    Lei, Tao
    Zhou, Chengjiang
    Bai, Haicheng
    Xing, Lin
    INFORMATION FUSION, 2023, 92 : 336 - 349
  • [27] Dual attention and channel transformer based generative adversarial network for restoration of the damaged artwork
    Kumar, Praveen
    Gupta, Varun
    Grover, Manan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [28] Attention fusion network for multimodal sentiment analysis
    Yuanyi Luo
    Rui Wu
    Jiafeng Liu
    Xianglong Tang
    Multimedia Tools and Applications, 2024, 83 : 8207 - 8217
  • [29] Attention fusion network for multimodal sentiment analysis
    Luo, Yuanyi
    Wu, Rui
    Liu, Jiafeng
    Tang, Xianglong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8207 - 8217
  • [30] FusAtNet: Dual Attention based SpectroSpatial Multimodal Fusion Network for Hyperspectral and LiDAR Classification
    Mohla, Satyam
    Pande, Shivam
    Banerjee, Biplab
    Chaudhuri, Subhasis
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 416 - 425