Corrosion protection characteristics of doped magnetite layers on carbon steel surfaces in aqueous CO2 environments

被引:0
|
作者
Owen, Joshua [1 ]
Ropital, Francois [2 ,3 ]
Joshi, Gaurav R. [2 ]
Kittel, Jean [2 ]
Barker, Richard [1 ]
机构
[1] Univ Leeds, Inst Funct Surfaces, Sch Mech Engn, Leeds LS2 9JT, England
[2] IFP Energies Nouvelles, BP 3, F-69360 Solaize, France
[3] Univ Lyon, INSA Lyon, MATEIS, CNRS,UMR, 7 Ave Jean Capelle, F-69621 Villeurbanne, France
来源
基金
英国工程与自然科学研究理事会;
关键词
Carbon steel; Magnetite; Electrochemical impedance spectroscopy; Electrodeposition; Localised corrosion; CO; 2; corrosion; UPPER RHINE GRABEN; ELECTROCHEMICAL DEPOSITION; TRIETHANOLAMINE COMPLEXES; FILMS; TEMPERATURE; IMPEDANCE; ELECTRODEPOSITION; PRODUCTS; BEHAVIOR; FECO3;
D O I
10.1016/j.jpse.2024.100199
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Magnetite (Fe3O4) corrosion product surface layers can limit uniform corrosion rates of carbon steel in aqueous carbon dioxide (CO2)-saturated environments. However, as Fe3O4 is a semiconductor, localised corrosion can proceed due to galvanic interaction between the Fe3O4 layers and bare steel. In this study, metal dopants were integrated into Fe3O4 layers to mitigate the effects of localised corrosion, whilst maintaining its protective barrier properties. Model Fe3O4 and metal-doped Fe3O4 layers were electrodeposited on carbon steel and immersed in a pH 5, 1 wt% sodium chloride (NaCl), CO2-saturated, 50 degrees C solution. Under the conditions studied, the incorporation of magnesium into the Fe3O4 layer resulted in reduced localised corrosion when the 3D surface profiles of the underlying carbon steel were measured using white light interferometry.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Engineering of corrosion product-polymer hybrid layers for enhanced CO2 corrosion protection of carbon steel part two: Computational investigation and surface characterisation
    Shaikhah, Dilshad
    Ritacca, Alessandra Gilda
    Ritacco, Ida
    Matamorose-Veloza, Adriana
    Taleb, Wassim
    Mohamed-Said, Maalek
    Cowe, Bruce
    Neville, Anne
    Camellone, Matteo Farnesi
    Barker, Richard
    POLYMER, 2022, 250
  • [22] Impact of corrosion products on performance of imidazoline corrosion inhibitor on X65 carbon steel in CO2 environments
    Shamsa, Amir
    Barker, Richard
    Hua, Yong
    Barmatov, Evgeny
    Hughes, Trevor L.
    Neville, Anne
    CORROSION SCIENCE, 2021, 185
  • [23] Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments
    Liu, Q. Y.
    Mao, L. J.
    Zhou, S. W.
    CORROSION SCIENCE, 2014, 84 : 165 - 171
  • [24] An EIS study of the effect of the pedant group in imidazolines as corrosion inhibitors for carbon steel in CO2 environments
    Villamizar, W.
    Casales, M.
    Gonzales-Rodriguez, J. G.
    Martinez, L.
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2006, 57 (09): : 696 - 704
  • [25] Effects of Cl-ion and temperature variations on steel corrosion in supercritical CO2 saturated aqueous environments
    Li, Meifeng
    Gross, Alexander
    Taylor, Ben
    Zhang, Hao
    Liu, Jing
    Process Safety and Environmental Protection, 2024, 187 : 1446 - 1453
  • [26] Inhibition of CO2 corrosion of carbon steel by rosin amide
    Li, GM
    ANTI-CORROSION METHODS AND MATERIALS, 2003, 50 (06) : 410 - 413
  • [27] Inhibition of CO2 corrosion of carbon steel with 1% Cr
    Paolinelli, L. D.
    Brown, B.
    Simison, S. N.
    Nesic, S.
    MATERIALS CHEMISTRY AND PHYSICS, 2012, 136 (2-3) : 1092 - 1102
  • [28] The effect of diamines on CO2 corrosion of low carbon steel
    Burchardt, T
    Våland, T
    Kvarekvål, J
    ADVANCES IN CORROSION CONTROL AND MATERIALS IN OIL AND GAS PRODUCTION, 1999, (26): : 410 - 416
  • [29] On the effect of microstructure in CO2 corrosion of carbon steel welds
    Andreassen, R
    Enerhaug, J
    ADVANCES IN CORROSION CONTROL AND MATERIALS IN OIL AND GAS PRODUCTION, 1999, (26): : 77 - 83
  • [30] Hydrophobic phytic acid conversion layers for corrosion protection of steel surfaces
    Michelle Weinert
    Jochen S. Gutmann
    Michael Dornbusch
    Journal of Coatings Technology and Research, 2024, 21 : 703 - 736