Thermodynamic, Rheological, and Electrical Properties of Hydrate Inhibitors: Implications for Natural Gas Production and Flow Assurance

被引:3
|
作者
Gupta, Pawan [1 ]
Krishna, Shanker [2 ]
Maurya, Neetish Kumar [1 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Petr Engn, Dhanbad 826004, Jharkhand, India
[2] Pandit Deendayal Energy Univ, Sch Energy Technol, Dept Petr Engn, Drilling Cementing & Stimulat DCS Res Ctr, Gandhinagar 382426, Gujarat, India
关键词
METHANE HYDRATE; DISSOCIATION KINETICS; POLYETHYLENE-GLYCOL; PHASE-EQUILIBRIUM; AQUEOUS-SOLUTIONS; MOLECULAR-WEIGHT; ETHYLENE-GLYCOL; XANTHAN GUM; POLYACRYLAMIDE; PERFORMANCE;
D O I
10.1021/acs.energyfuels.4c01785
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work studies the relationship between the thermodynamic, rheological, and electrical characteristics of gas hydrate inhibitors dissolved in water. It explores how inhibitors might be used to address flow assurance issues and enhance the output of methane from hydrate reservoirs. Several models are available in the literature that predict the thermodynamic properties of the inhibitors and additives. However, they still have limitations when it comes to forecasting thermodynamic parameters in the presence of polymers, binary solutions, and mixtures. This study aims to establish a universal correlation between the rheology of inhibitor aqueous solutions and their inhibition effects. Thermodynamic hydrate inhibitors (THIs) and kinetic hydrate inhibitors (KHIs) are the primary types of inhibitors used. Common THIs are electrolytes like KCl, NaCl, CaCl2, and other nonelectrolytes such as methanol, PEG 200, PEG 400, and PEG 600. The viscosity of chemical inhibitors in water-based materials may govern the effectiveness of hydrate inhibition. Several experiments were performed to understand and develop a correlation between the rheology of inhibitor aqueous solutions and the thermodynamic inhibition of gas hydrates. The temperature depression (Delta T-Depression) data of the hydrate were obtained from the existing literature. Delta T-Depression data were compared with measured rheology at shear rates of mu(1) = 30 s(-1) and mu(2) = 66 s(-1). The viscosity measurement was conducted at 4 degrees C, the typical temperature of natural gas hydrate reservoirs. In order to provide more comprehensive data, the electrical characteristics of the aqueous solutions were measured and recorded. The rheological-thermodynamic/electrical-thermodynamic model can be developed by comparing Delta T-Depression, viscosity, and electrical data/information. Additionally, a study was conducted to examine whether the nanoparticles altered the viscosity and electrical conductivity of the base fluids. The findings from the study will be highly valuable for production from hydrate reservoirs and flow assurance investigations.
引用
收藏
页码:15284 / 15294
页数:11
相关论文
共 50 条
  • [41] Investigation into gas production from natural gas hydrate: A review
    Li, Xiao-Sen
    Xu, Chun-Gang
    Zhang, Yu
    Ruan, Xu-Ke
    Li, Gang
    Wang, Yi
    APPLIED ENERGY, 2016, 172 : 286 - 322
  • [42] Customized Federated Kernel Regression learning for predicting natural gas hydrate equilibrium with thermodynamic inhibitors: A comprehensive study
    Alavi, Fatemeh
    Sharifzadeh, Mahdi
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [43] Depressurization and Electrical Heating of Hydrate Sediment for Gas Production
    Minagawa, Hideki
    Ito, Takuma
    Kimura, Sho
    Kaneko, Hiroaki
    Narita, Hideo
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2014, 24 (03) : 218 - 223
  • [44] An Experimental Study on the Synergetic Effects of Kinetic and Thermodynamic Gas Hydrate Inhibitors
    Huo, H. J.
    Wang, R. H.
    Ni, H. J.
    Liu, Y. L.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2014, 32 (16) : 1940 - 1947
  • [45] Investigation of natural gas hydrate slurry flow properties and flow patterns using a high pressure flow loop
    Ding, Lin
    Shi, Bohui
    Lv, Xiaofang
    Liu, Yang
    Wu, Haihao
    Wang, Wei
    Gong, Jing
    CHEMICAL ENGINEERING SCIENCE, 2016, 146 : 199 - 206
  • [46] Design of natural gas hydrate inhibitors from a mechanistic understanding
    Anderson, Brian
    Borghi, Gian Paolo
    Tester, Jefferson W.
    Trout, Bernhardt
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 232 : 901 - 901
  • [47] Natural gas production from hydrate decomposition by depressurization
    Ji, C
    Ahmadi, G
    Smith, DH
    CHEMICAL ENGINEERING SCIENCE, 2001, 56 (20) : 5801 - 5814
  • [48] Numerical simulation on depressurization production of natural gas hydrate
    Wang, Wenbo
    Liu, Xiao
    Cui, Wei
    Xiao, Jiaqi
    Acta Geophysica Sinica, 2021, 64 (06): : 2097 - 2107
  • [49] Numerical simulation on depressurization production of natural gas hydrate
    Wang WenBo
    Liu Xiao
    Cui Wei
    Xiao JiaQi
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2021, 64 (06): : 2097 - 2107
  • [50] Review of exploration and production technology of natural gas hydrate
    Cui Y.
    Lu C.
    Wu M.
    Peng Y.
    Yao Y.
    Luo W.
    Luo, Wanjing (luowanjing@cugb.edu.cn), 2018, Yandy Scientific Press (02): : 53 - 62