On the Exploration of Temporal Fusion Transformers for Anomaly Detection with Multivariate Aviation Time-Series Data

被引:0
|
作者
Ayhan, Bulent [1 ]
Vargo, Erik P. [1 ]
Tang, Huang [1 ]
机构
[1] MITRE Corp, McLean, VA 22102 USA
关键词
aviation; flight; time-series; forecasting; anomaly detection; transformers;
D O I
10.3390/aerospace11080646
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this work, we explored the feasibility of using a transformer-based time-series forecasting architecture, known as the Temporal Fusion Transformer (TFT), for anomaly detection using threaded track data from the MITRE Corporation's Transportation Data Platform (TDP) and digital flight data. The TFT architecture has the flexibility to include both time-varying multivariate data and categorical data from multimodal data sources and conduct single-output or multi-output predictions. For anomaly detection, rather than training a TFT model to predict the outcomes of specific aviation safety events, we train a TFT model to learn nominal behavior. Any significant deviation of the TFT model's future horizon forecast for the output flight parameters of interest from the observed time-series data is considered an anomaly when conducting evaluations. For proof-of-concept demonstrations, we used an unstable approach (UA) as the anomaly event. This type of anomaly detection approach with nominal behavior learning can be used to develop flight analytics to identify emerging safety hazards in historical flight data and has the potential to be used as an on-board early warning system to assist pilots during flight.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Time-series Multivariate Multistep Traffic Flow Forecasting using Temporal Fusion Transformers
    Saadman Sakif Arnob
    Ali Abir Shuvro
    Saadman Rahman
    Md. Moniruzzaman
    Md. Sakhawat Hossen
    International Journal of Intelligent Transportation Systems Research, 2025, 23 (1) : 622 - 628
  • [2] Adaptive Multivariate Time-Series Anomaly Detection
    Lv, Jianming
    Wang, Yaquan
    Chen, Shengjing
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (04)
  • [3] Anomaly Detection in Industrial Multivariate Time-Series Data With Neutrosophic Theory
    Liu, Peng
    Han, Qilong
    Wu, Ting
    Tao, Wenjian
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (15) : 13458 - 13473
  • [4] Multivariate time-series anomaly detection via temporal convolutional and graph attention networks
    He, Qiang
    Wang, Guanqun
    Wang, Hengyou
    Chen, Linlin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 5953 - 5962
  • [5] Anomaly Detection from Multivariate Time-Series with Sparse Representation
    Takeishi, Naoya
    Yairi, Takehisa
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 2651 - 2656
  • [6] Enhancing multivariate time-series anomaly detection with positional encoding mechanisms in transformersEnhancing multivariate time-series anomaly detection with...A. Alioghli, F. Okay
    Abdul Amir Alioghli
    Feyza Yıldırım Okay
    The Journal of Supercomputing, 2025, 81 (1)
  • [7] Contextual anomaly detection for multivariate time series data
    Kim, Hyojoong
    Kim, Heeyoung
    QUALITY ENGINEERING, 2023, 35 (04) : 686 - 695
  • [8] Anomaly detection in multivariate time series of drilling data
    Altindal, Mehmet Cagri
    Nivlet, Philippe
    Tabib, Mandar
    Rasheed, Adil
    Kristiansen, Tron Golder
    Khosravanian, Rasool
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 237
  • [9] Real-Time Deep Anomaly Detection Framework for Multivariate Time-Series Data in Industrial IoT
    Nizam, Hussain
    Zafar, Samra
    Lv, Zefeng
    Wang, Fan
    Hu, Xiaopeng
    IEEE SENSORS JOURNAL, 2022, 22 (23) : 22836 - 22849
  • [10] Suboptimal Partitioning of Time-series Data for Anomaly Detection
    Jin, Xin
    Sarkar, Soumik
    Mukherjee, Kushal
    Ray, Asok
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 1020 - 1025