A pathology foundation model for cancer diagnosis and prognosis prediction

被引:17
|
作者
Wang, Xiyue [1 ,2 ]
Zhao, Junhan [1 ,3 ]
Marostica, Eliana [1 ,4 ]
Yuan, Wei [5 ]
Jin, Jietian [6 ]
Zhang, Jiayu [5 ]
Li, Ruijiang [2 ]
Tang, Hongping [7 ]
Wang, Kanran [8 ]
Li, Yu [9 ]
Wang, Fang [10 ]
Peng, Yulong [11 ]
Zhu, Junyou [12 ]
Zhang, Jing [5 ]
Jackson, Christopher R. [1 ,13 ,14 ]
Zhang, Jun [15 ]
Dillon, Deborah [16 ]
Lin, Nancy U. [17 ]
Sholl, Lynette [16 ,18 ]
Denize, Thomas [16 ,18 ]
Meredith, David [16 ]
Ligon, Keith L. [16 ,18 ]
Signoretti, Sabina [16 ,18 ]
Ogino, Shuji [16 ,19 ,20 ]
Golden, Jeffrey A. [16 ,21 ]
Nasrallah, MacLean P. [22 ]
Han, Xiao [15 ]
Yang, Sen [1 ,2 ]
Yu, Kun-Hsing [1 ,16 ,23 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[2] Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[4] Harvard MIT, Div Hlth Sci & Technol, Boston, MA USA
[5] Sichuan Univ, Coll Biomed Engn, Chengdu, Peoples R China
[6] Sun Yat Sen Univ Canc Ctr, Dept Pathol, Guangzhou, Peoples R China
[7] Shenzhen Matern & Child Healthcare Hosp, Dept Pathol, Shenzhen, Peoples R China
[8] Chongqing Univ Canc Hosp, Dept Radiat Oncol, Chongqing, Peoples R China
[9] Chongqing Univ Canc Hosp, Dept Pathol, Chongqing, Peoples R China
[10] Qingdao Univ, Affiliated Yantai Yuhuangding Hosp, Dept Pathol, Yantai, Peoples R China
[11] Jinan Univ, Affiliated Hosp 1, Dept Pathol, Guangzhou, Peoples R China
[12] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Burn, Guangzhou, Peoples R China
[13] Penn State Univ, Dept Pathol & Lab Med, Hummelstown, PA USA
[14] Massachusetts Gen Hosp, Dept Pathol, Boston, MA USA
[15] Tencent AI Lab, Shenzhen, Peoples R China
[16] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[17] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA USA
[18] Dana Farber Canc Inst, Dept Pathol, Boston, MA USA
[19] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[20] Broad Inst MIT & Harvard, Cambridge, MA USA
[21] Cedars Sinai Med Ctr, Dept Pathol, Los Angeles, CA USA
[22] Univ Penn, Dept Pathol & Lab Med, Perelman Sch Med, Philadelphia, PA USA
[23] Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
ARTIFICIAL-INTELLIGENCE;
D O I
10.1038/s41586-024-07894-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Histopathology image evaluation is indispensable for cancer diagnoses and subtype classification. Standard artificial intelligence methods for histopathology image analyses have focused on optimizing specialized models for each diagnostic task1,2. Although such methods have achieved some success, they often have limited generalizability to images generated by different digitization protocols or samples collected from different populations3. Here, to address this challenge, we devised the Clinical Histopathology Imaging Evaluation Foundation (CHIEF) model, a general-purpose weakly supervised machine learning framework to extract pathology imaging features for systematic cancer evaluation. CHIEF leverages two complementary pretraining methods to extract diverse pathology representations: unsupervised pretraining for tile-level feature identification and weakly supervised pretraining for whole-slide pattern recognition. We developed CHIEF using 60,530 whole-slide images spanning 19 anatomical sites. Through pretraining on 44 terabytes of high-resolution pathology imaging datasets, CHIEF extracted microscopic representations useful for cancer cell detection, tumour origin identification, molecular profile characterization and prognostic prediction. We successfully validated CHIEF using 19,491 whole-slide images from 32 independent slide sets collected from 24 hospitals and cohorts internationally. Overall, CHIEF outperformed the state-of-the-art deep learning methods by up to 36.1%, showing its ability to address domain shifts observed in samples from diverse populations and processed by different slide preparation methods. CHIEF provides a generalizable foundation for efficient digital pathology evaluation for patients with cancer. A study describes the development of a generalizable foundation machine learning framework to extract pathology imaging features for cancer diagnosis and prognosis prediction.
引用
收藏
页码:970 / 978
页数:25
相关论文
共 50 条
  • [41] Prediction of nodal metastasis and prognosis in breast cancer: A neural model
    Naguib, RNG
    Adams, AE
    Horne, CHW
    Angus, B
    Smith, AF
    Sherbet, GV
    Lennard, TWJ
    ANTICANCER RESEARCH, 1997, 17 (4A) : 2735 - 2741
  • [42] PATHOLOGY AND PROGNOSIS OF CANCER OF COLON AND RECTUM
    MORSON, BC
    BUSSEY, HJR
    SCHWEIZERISCHE MEDIZINISCHE WOCHENSCHRIFT, 1967, 97 (18) : 568 - &
  • [43] APPRAISAL OF A MODEL FOR PREDICTION OF PROGNOSIS IN ADVANCED COLORECTAL-CANCER
    GRAF, W
    BERGSTROM, R
    PAHLMAN, L
    GLIMELIUS, B
    EUROPEAN JOURNAL OF CANCER, 1994, 30A (04) : 453 - 457
  • [44] Prediction of molecular subtypes for endometrial cancer based on hierarchical foundation model
    Cui, Haoyu
    Guo, Qinhao
    Xu, Jun
    Wu, Xiaohua
    Cai, Chengfei
    Jiao, Yiping
    Ming, Wenlong
    Wen, Hao
    Wang, Xiangxue
    BIOINFORMATICS, 2025, 41 (02)
  • [45] A Quest for New Cancer Diagnosis, Prognosis and Prediction Biomarkers and Their Use in Biosensors Development
    Ramirez-Valles, Eda G.
    Rodriguez-Pulido, Alicia
    Barraza-Salas, Marcelo
    Martinez-Velis, Isaac
    Meneses-Morales, Ivan
    Ayala-Garcia, Victor M.
    Alba-Fierro, Carlos A.
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2020, 19
  • [46] Clinical Perspective on Proteomic and Glycomic Biomarkers for Diagnosis, Prognosis, and Prediction of Pancreatic Cancer
    Hanna-Sawires, Randa G.
    Schiphuis, Jorinde H.
    Wuhrer, Manfred
    Vasen, Hans F. A.
    van Leerdam, Monique E.
    Bonsing, Bert A.
    Mesker, Wilma E.
    van der Burgt, Yuri E. M.
    Tollenaar, Rob A. E. M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (05) : 1 - 16
  • [47] The prediction of lung cancer prognosis with blood lipid levels and ratios at the time of diagnosis
    Arslan, Ferhat
    Yalcin, Selim
    Karahan, Irfan
    BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL, 2022, 6 (04): : 556 - 562
  • [48] The value of diagnosis and prognosis prediction of serum miR-29a for colorectal cancer
    Pang, Zhi
    Sha, Sha
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2013, 28 : 698 - 698
  • [49] Applying artificial intelligence technology to assist with breast cancer diagnosis and prognosis prediction
    Jones, Meredith A.
    Islam, Warid
    Faiz, Rozwat
    Chen, Xuxin
    Zheng, Bin
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [50] Use of artificial neural networks for diagnosis, staging and prognosis prediction for prostate cancer
    McLeod, D
    Snow, P
    Altwein, J
    Andersson, L
    Bono, AV
    Brandt, J
    Cockett, A
    Egevad, L
    Foo, K
    Partin, A
    Tribukait, B
    Vallancien, G
    PROSTATE CANCER, 2000, : 515 - 530