A pathology foundation model for cancer diagnosis and prognosis prediction

被引:17
|
作者
Wang, Xiyue [1 ,2 ]
Zhao, Junhan [1 ,3 ]
Marostica, Eliana [1 ,4 ]
Yuan, Wei [5 ]
Jin, Jietian [6 ]
Zhang, Jiayu [5 ]
Li, Ruijiang [2 ]
Tang, Hongping [7 ]
Wang, Kanran [8 ]
Li, Yu [9 ]
Wang, Fang [10 ]
Peng, Yulong [11 ]
Zhu, Junyou [12 ]
Zhang, Jing [5 ]
Jackson, Christopher R. [1 ,13 ,14 ]
Zhang, Jun [15 ]
Dillon, Deborah [16 ]
Lin, Nancy U. [17 ]
Sholl, Lynette [16 ,18 ]
Denize, Thomas [16 ,18 ]
Meredith, David [16 ]
Ligon, Keith L. [16 ,18 ]
Signoretti, Sabina [16 ,18 ]
Ogino, Shuji [16 ,19 ,20 ]
Golden, Jeffrey A. [16 ,21 ]
Nasrallah, MacLean P. [22 ]
Han, Xiao [15 ]
Yang, Sen [1 ,2 ]
Yu, Kun-Hsing [1 ,16 ,23 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[2] Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[4] Harvard MIT, Div Hlth Sci & Technol, Boston, MA USA
[5] Sichuan Univ, Coll Biomed Engn, Chengdu, Peoples R China
[6] Sun Yat Sen Univ Canc Ctr, Dept Pathol, Guangzhou, Peoples R China
[7] Shenzhen Matern & Child Healthcare Hosp, Dept Pathol, Shenzhen, Peoples R China
[8] Chongqing Univ Canc Hosp, Dept Radiat Oncol, Chongqing, Peoples R China
[9] Chongqing Univ Canc Hosp, Dept Pathol, Chongqing, Peoples R China
[10] Qingdao Univ, Affiliated Yantai Yuhuangding Hosp, Dept Pathol, Yantai, Peoples R China
[11] Jinan Univ, Affiliated Hosp 1, Dept Pathol, Guangzhou, Peoples R China
[12] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Burn, Guangzhou, Peoples R China
[13] Penn State Univ, Dept Pathol & Lab Med, Hummelstown, PA USA
[14] Massachusetts Gen Hosp, Dept Pathol, Boston, MA USA
[15] Tencent AI Lab, Shenzhen, Peoples R China
[16] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[17] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA USA
[18] Dana Farber Canc Inst, Dept Pathol, Boston, MA USA
[19] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[20] Broad Inst MIT & Harvard, Cambridge, MA USA
[21] Cedars Sinai Med Ctr, Dept Pathol, Los Angeles, CA USA
[22] Univ Penn, Dept Pathol & Lab Med, Perelman Sch Med, Philadelphia, PA USA
[23] Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
ARTIFICIAL-INTELLIGENCE;
D O I
10.1038/s41586-024-07894-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Histopathology image evaluation is indispensable for cancer diagnoses and subtype classification. Standard artificial intelligence methods for histopathology image analyses have focused on optimizing specialized models for each diagnostic task1,2. Although such methods have achieved some success, they often have limited generalizability to images generated by different digitization protocols or samples collected from different populations3. Here, to address this challenge, we devised the Clinical Histopathology Imaging Evaluation Foundation (CHIEF) model, a general-purpose weakly supervised machine learning framework to extract pathology imaging features for systematic cancer evaluation. CHIEF leverages two complementary pretraining methods to extract diverse pathology representations: unsupervised pretraining for tile-level feature identification and weakly supervised pretraining for whole-slide pattern recognition. We developed CHIEF using 60,530 whole-slide images spanning 19 anatomical sites. Through pretraining on 44 terabytes of high-resolution pathology imaging datasets, CHIEF extracted microscopic representations useful for cancer cell detection, tumour origin identification, molecular profile characterization and prognostic prediction. We successfully validated CHIEF using 19,491 whole-slide images from 32 independent slide sets collected from 24 hospitals and cohorts internationally. Overall, CHIEF outperformed the state-of-the-art deep learning methods by up to 36.1%, showing its ability to address domain shifts observed in samples from diverse populations and processed by different slide preparation methods. CHIEF provides a generalizable foundation for efficient digital pathology evaluation for patients with cancer. A study describes the development of a generalizable foundation machine learning framework to extract pathology imaging features for cancer diagnosis and prognosis prediction.
引用
收藏
页码:970 / 978
页数:25
相关论文
共 50 条
  • [1] Computational pathology in cancer diagnosis, prognosis, and prediction - present day and prospects
    Verghese, Gregory
    Lennerz, Jochen K.
    Ruta, Danny
    Ng, Wen
    Thavaraj, Selvam
    Siziopikou, Kalliopi P.
    Naidoo, Threnesan
    Rane, Swapnil
    Salgado, Roberto
    Pinder, Sarah E.
    Grigoriadis, Anita
    JOURNAL OF PATHOLOGY, 2023, : 551 - 563
  • [2] Clinical pathology of breast cancer: Prognosis and prediction
    Kreipe H.
    Nitz U.
    Der Gynäkologe, 2016, 49 (10): : 737 - 745
  • [3] Molecular pathology in the prediction of prognosis and treatment in cancer
    Roecken, Christoph
    ONKOLOGE, 2019, 25 (Suppl 1): : 54 - 60
  • [4] A foundation model for generalizable cancer diagnosis and survival prediction from histopathological images
    Yang, Zhaochang
    Wei, Ting
    Liang, Ying
    Yuan, Xin
    Gao, Ruitian
    Xia, Yujia
    Zhou, Jie
    Zhang, Yue
    Yu, Zhangsheng
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [5] Computational pathology for precision diagnosis, treatment, and prognosis of cancer
    Cheng, Jun
    Huang, Kun
    Xu, Jun
    FRONTIERS IN MEDICINE, 2023, 10
  • [6] A generalized AI method for pathology cancer diagnosis and prognosis prediction based on transfer learning and hierarchical split
    Yin, Pengzhi
    Zhou, Zehao
    Liu, Jingze
    Jiang, Nan
    Zhang, Junchao
    Liu, Shiyu
    Wang, Feiyang
    Wang, Li
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (17):
  • [7] Autoantibodies in the diagnosis, prognosis, and prediction of colorectal cancer
    Niloofa, Roshan
    De Zoysa, M. Ishan
    Seneviratne, Suranjith L.
    JOURNAL OF CANCER RESEARCH AND THERAPEUTICS, 2021, 17 (04) : 819 - 833
  • [8] Small cell cancer of the bladder: pathology, diagnosis, treatment and prognosis
    Ismaili, N.
    Arifi, S.
    Flechon, A.
    El Mesbahi, O.
    Blay, J. -Y.
    Droz, J. -P.
    Errihani, H.
    BULLETIN DU CANCER, 2009, 96 (06) : E30 - E44
  • [9] Combining Diagnostic Imaging and Pathology for Improving Diagnosis and Prognosis of Cancer
    Schillaci, Orazio
    Scimeca, Manuel
    Toschi, Nicola
    Bonfiglio, Rita
    Urbano, Nicoletta
    Bonanno, Elena
    CONTRAST MEDIA & MOLECULAR IMAGING, 2019,
  • [10] THERMOGRAPHY - DIAGNOSIS, PREDICTION AND PROGNOSIS IN BREAST-CANCER
    STERNS, E
    NORMAN, A
    CLINICAL AND INVESTIGATIVE MEDICINE-MEDECINE CLINIQUE ET EXPERIMENTALE, 1985, 8 (03): : A165 - A165