ObjectivesThe purpose of this study was to investigate the relevance of focal liver lesions (FLL) size for lesion detection comparing navigator triggering (TRIG) to free breathing (FB) liver Diffusion-weighted magnetic resonance imaging (DWI). Materials and method Patients with known or suspected FLL were prospectively (registry number 276_19 B) included from October to December 2019 in this study, out of which 32 had liver lesions. Echo planar spin-echo DWI data both with TRIG and FB were with approximately constant acquisition times acquired at 1.5 T. Lesions were segmented in the b = 800 s/mm(2) images in both the TRIG and FB images. The lesion size, location (liver segment), liver lesion visibility, as well as contrast-to-noise ratio (CNR) were recorded. The CNR was assessed with the Wilcoxon-Mann-Whitney test and the number of visible lesions with the Fisher test. Results Data from 43 patients (22 female) were analyzed. The mean patient age was 58 +/- 14 years. A total of 885 FLL (Ntotal) were segmented. Among these, 811 lesions (Nboth) were detected with TRIG and FB, 65 lesions exclusively with TRIG (NTRIG_Only), and nine exclusively in FB (NFB_Only). The largest additional lesion in TRIG/FB had a diameter of 10.4 mm/7.6 mm. The number of additional lesions detected with TRIG decreased with size. Among all lesions <= 4.7 mm, the relative number of additional lesions was 15.6%. Additional lesions were found in all liver segments with TRIG. In the left liver lobe, the relative proportion was 9.2%, and in the right liver lobe 5.4%. CNR and visibility were significantly higher in TRIG than in FB (p < 0.001). In relation to size, the difference is significant in terms of visibility and CNR for lesion diameters <= 8 mm. Conclusion Respiration triggering can improve the detection of small liver lesions with diameters up to approx. 1 cm in the whole liver.