Dot product dimension of unicyclic graphs

被引:0
|
作者
Bahrami, Mahin [1 ]
Kiani, Dariush [1 ]
Bahmani, Asghar [1 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Math & Comp Sci, Tehran, Iran
基金
美国国家科学基金会;
关键词
k-dot product representation; k-dot product dimension; REPRESENTATIONS;
D O I
10.1016/j.dam.2024.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G = (V(G), E(G)) is called a k-dot product graph if there is a function f : V(G) -> R-k such that for any two distinct vertices u and v, one has f(u).f(v) >= 1 if and only if uv is an element of E(G). The minimum value k such that G is a k-dot product graph, is called the dot product dimension rho(G) of G. These concepts were introduced for the first time by Fiduccia, Scheinerman, Trenk and Zito. In this paper, we determine the dot product dimension of unicyclic graphs. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:196 / 213
页数:18
相关论文
共 50 条
  • [21] Sphere and Dot Product Representations of Graphs
    Ross J. Kang
    Tobias Müller
    Discrete & Computational Geometry, 2012, 47 : 548 - 568
  • [22] The metric dimension of strong product graphs
    Rodriguez-Velazquez, Juan A.
    Kuziak, Dorota
    Yero, Ismael G.
    Sigarreta, Jose M.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (02) : 261 - 268
  • [23] The partition dimension of corona product graphs
    Rodriguez-Velazquez, Juan A.
    Yero, Ismael G.
    Kuziak, Dorota
    ARS COMBINATORIA, 2016, 127 : 387 - 399
  • [24] A Comparison between the Metric Dimension and Zero Forcing Number of Trees and Unicyclic Graphs
    Linda EROH
    Cong X.KANG
    Eunjeong YI
    Acta Mathematica Sinica,English Series, 2017, 33 (06) : 731 - 747
  • [25] A comparison between the metric dimension and zero forcing number of trees and unicyclic graphs
    Linda Eroh
    Cong X. Kang
    Eunjeong Yi
    Acta Mathematica Sinica, English Series, 2017, 33 : 731 - 747
  • [26] The metric dimension of the lexicographic product of graphs
    Jannesari, Mohsen
    Omoomi, Behnaz
    DISCRETE MATHEMATICS, 2012, 312 (22) : 3349 - 3356
  • [27] On the metric dimension of corona product graphs
    Yero, I. G.
    Kuziak, D.
    Rodriguez-Velazquez, J. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2793 - 2798
  • [28] The metric dimension of the lexicographic product of graphs
    Saputro, S. W.
    Simanjuntak, R.
    Uttunggadewa, S.
    Assiyatun, H.
    Baskoro, E. T.
    Salman, A. N. M.
    Baca, M.
    DISCRETE MATHEMATICS, 2013, 313 (09) : 1045 - 1051
  • [29] Partition dimension of rooted product graphs
    Monica, Mohan Chris
    Santhakumar, Samivel
    DISCRETE APPLIED MATHEMATICS, 2019, 262 : 138 - 147
  • [30] A Comparison between the Metric Dimension and Zero Forcing Number of Trees and Unicyclic Graphs
    Eroh, Linda
    Kang, Cong X.
    Yi, Eunjeong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) : 731 - 747