Dot product dimension of unicyclic graphs

被引:0
|
作者
Bahrami, Mahin [1 ]
Kiani, Dariush [1 ]
Bahmani, Asghar [1 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Math & Comp Sci, Tehran, Iran
基金
美国国家科学基金会;
关键词
k-dot product representation; k-dot product dimension; REPRESENTATIONS;
D O I
10.1016/j.dam.2024.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G = (V(G), E(G)) is called a k-dot product graph if there is a function f : V(G) -> R-k such that for any two distinct vertices u and v, one has f(u).f(v) >= 1 if and only if uv is an element of E(G). The minimum value k such that G is a k-dot product graph, is called the dot product dimension rho(G) of G. These concepts were introduced for the first time by Fiduccia, Scheinerman, Trenk and Zito. In this paper, we determine the dot product dimension of unicyclic graphs. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:196 / 213
页数:18
相关论文
共 50 条
  • [1] On the partition dimension of unicyclic graphs
    Fernau, Henning
    Rodriguez-Velazquez, Juan A.
    Yero, Ismael G.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (04): : 381 - 391
  • [2] Identifying the Exact Value of the Metric Dimension and Edge Dimension of Unicyclic Graphs
    Zhu, Enqiang
    Peng, Shaoxiang
    Liu, Chanjuan
    MATHEMATICS, 2022, 10 (19)
  • [3] An Efficient Algorithm to Compute Dot Product Dimension of Some Outerplanar Graphs
    Bahrami, Mahin
    Kiani, Dariush
    Rahmati, Zahed
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024,
  • [4] ON A PRODUCT DIMENSION OF GRAPHS
    LOVASZ, L
    NESETRIL, J
    PULTR, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 29 (01) : 47 - 67
  • [5] On unicyclic graphs of metric dimension 2 with vertices of degree 4
    Dudenko, Marharyta
    Oliynyk, Bogdana
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 26 (02): : 256 - 269
  • [6] Dot product representations of graphs
    Fiduccia, CM
    Scheinerman, ER
    Trenk, A
    Zito, JS
    DISCRETE MATHEMATICS, 1998, 181 (1-3) : 113 - 138
  • [7] Bipartite dot product graphs
    Bailey, Sean
    Brown, David
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS- COMPUTER SYSTEMS THEORY, 2020, 5 (03) : 148 - 158
  • [8] The partition dimension of strong product graphs and Cartesian product graphs
    Gonzalez Yero, Ismael
    Jakovac, Marko
    Kuziak, Dorota
    Taranenko, Andrej
    DISCRETE MATHEMATICS, 2014, 331 : 43 - 52
  • [9] Dot product dimensions of graphs
    Li, Bo-Jr
    Chang, Gerard Jennhwa
    DISCRETE APPLIED MATHEMATICS, 2014, 166 : 159 - 163
  • [10] ON A PRODUCT DIMENSION OF BIPARTITE GRAPHS
    POLJAK, S
    RODL, D
    PULTR, A
    JOURNAL OF GRAPH THEORY, 1983, 7 (04) : 475 - 486