Feature Selection with L1 Regularization in Formal Neurons

被引:0
|
作者
Bobrowski, Leon [1 ,2 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, Wiejska 45A, Bialystok, Poland
[2] Inst Biocybernet & Biomed Engn, PAS, Warsaw, Poland
关键词
high-dimensional data sets; formal neurons with a margin; feature selection; CPL criterion functions; L-1; regularization;
D O I
10.1007/978-3-031-62495-7_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Designing classifiers on high-dimensional learning data sets is an important task that appears in artificial intelligence applications. Designing classifiers for high-dimensional data involves learning hierarchical neural networks combined with feature selection. Feature selection aims to omit features that are unnecessary for a given problem. Feature selection in formal meurons can be achieved by minimizing convex and picewise linear (CPL) criterion functions with L-1 regularization. Minimizing CPL criterion functions can be associated with computations on a finite number of vertices in the parameter space.
引用
收藏
页码:343 / 353
页数:11
相关论文
共 50 条
  • [31] Asymptotic properties for combined L1 and concave regularization
    Fan, Yingying
    Lv, Jinchi
    BIOMETRIKA, 2014, 101 (01) : 57 - 70
  • [32] L1/2 REGULARIZATION SAR IMAGING VIA COMPLEX IMAGE DATA: REGULARIZATION PARAMETER SELECTION FOR TARGET DETECTION TASK
    Ni, Jia-cheng
    Zhang, Qun
    Su, Ling-hua
    Liang, Jia
    Huo, Wen-jun
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2298 - 2301
  • [34] Training Compact DNNs with l1/2 Regularization
    Tang, Anda
    Niu, Lingfeng
    Miao, Jianyu
    Zhang, Peng
    PATTERN RECOGNITION, 2023, 136
  • [35] An l1 Regularization Framework for Optimal Rule Combination
    Han, Yanjun
    Wang, Jue
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, 2009, 5781 : 501 - 516
  • [36] An approximation theory approach to learning with l1 regularization
    Wang, Hong-Yan
    Xiao, Quan-Wu
    Zhou, Ding-Xuan
    JOURNAL OF APPROXIMATION THEORY, 2013, 167 : 240 - 258
  • [37] Sparse Hopfield network reconstruction with l1 regularization
    Huang, Haiping
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (11):
  • [38] Robust censored regression with l1 -norm regularization
    Beyhum, Jad
    Van Keilegom, Ingrid
    TEST, 2023, 32 (01) : 146 - 162
  • [39] Oriented total variation l1/2 regularization
    Jiang, Wenfei
    Cui, Hengbin
    Zhang, Fan
    Rong, Yaocheng
    Chen, Zhibo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 29 : 125 - 137
  • [40] Control subgradient algorithm for image l1 regularization
    El Mouatasim, Abdelkrim
    Wakrim, Mohammed
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 : 275 - 283