A projected fixed point method for a class of vertical tensor complementarity problems

被引:0
|
作者
Wu, Shi-Liang [1 ,2 ]
Long, Mei [1 ,2 ]
Li, Cui-Xia [2 ]
机构
[1] Yunnan Normal Univ, Sch Math, Kunming 650500, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Yunnan Key Lab Modern Analyt Math & Applicat, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Vertical tensor complementarity problem; Projected fixed point method; Power Lipschitz tensor;
D O I
10.1007/s11590-024-02146-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider the numerical solution of a class of vertical tensor complementarity problems. By reformulating the involved vertical tensor complementarity problem (VTCP) as an equivalent projected fixed point equation, together with the relevant properties of the power Lipschitz tensor, we propose a projected fixed point method for the involved VTCP, and discuss its convergence properties. Numerical experiments are given to illustrate the effectiveness of the proposed method.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Improving projected successive overrelaxation method for linear complementarity problems
    Koulisianis, MD
    Papatheodorou, TS
    APPLIED NUMERICAL MATHEMATICS, 2003, 45 (01) : 29 - 40
  • [42] Projected trust region method for stochastic linear complementarity problems
    Wang, Ying-xiao
    Du, Shou-qiang
    Li, Huan-huan
    Chen, Miao
    SCIENCEASIA, 2018, 44 (06): : 453 - 460
  • [43] CLASS OF DISTURBED FIXED POINT PROBLEMS
    KLUGE, R
    MATHEMATISCHE NACHRICHTEN, 1970, 47 (1-6) : 319 - &
  • [44] An alternating direction method of multipliers for tensor complementarity problems
    Zhu, Haoran
    Zhang, Liping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04):
  • [45] An alternating direction method of multipliers for tensor complementarity problems
    Haoran Zhu
    Liping Zhang
    Computational and Applied Mathematics, 2021, 40
  • [46] A SMOOTHING NEWTON METHOD FOR TENSOR EIGENVALUE COMPLEMENTARITY PROBLEMS
    Hu, Wenyu
    Lu, Laishui
    Yin, Cheng
    Yu, Gaohang
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (02): : 243 - 253
  • [47] Homotopy method for a class of nonconvex Brouwer fixed-point problems
    Applied Mathematics and Computation (New York), 1996, 74 (01):
  • [48] Homotopy method for a class of nonconvex Brouwer fixed-point problems
    Yu, B
    Lin, ZH
    APPLIED MATHEMATICS AND COMPUTATION, 1996, 74 (01) : 65 - 77
  • [49] SIMPLEX METHOD AND A CLASS OF LINEAR COMPLEMENTARITY PROBLEMS
    MOHAN, SR
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 14 (01) : 1 - 9
  • [50] Iterative Method for a Class of Linear Complementarity Problems
    Yong, Longquan
    INFORMATION COMPUTING AND APPLICATIONS, PT 1, 2010, 105 : 390 - 398