A projected fixed point method for a class of vertical tensor complementarity problems

被引:0
|
作者
Wu, Shi-Liang [1 ,2 ]
Long, Mei [1 ,2 ]
Li, Cui-Xia [2 ]
机构
[1] Yunnan Normal Univ, Sch Math, Kunming 650500, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Yunnan Key Lab Modern Analyt Math & Applicat, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Vertical tensor complementarity problem; Projected fixed point method; Power Lipschitz tensor;
D O I
10.1007/s11590-024-02146-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider the numerical solution of a class of vertical tensor complementarity problems. By reformulating the involved vertical tensor complementarity problem (VTCP) as an equivalent projected fixed point equation, together with the relevant properties of the power Lipschitz tensor, we propose a projected fixed point method for the involved VTCP, and discuss its convergence properties. Numerical experiments are given to illustrate the effectiveness of the proposed method.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Projected fixed-point method for vertical tensor complementarity problems
    Zhang, Ting
    Wang, Yong
    Huang, Zheng-Hai
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 89 (01) : 219 - 245
  • [2] A projected splitting method for vertical tensor complementarity problems
    Dai, Ping-Fan
    Wu, Shi-Liang
    OPTIMIZATION LETTERS, 2024, 18 (04) : 1005 - 1021
  • [3] A projected splitting method for vertical tensor complementarity problems
    Ping-Fan Dai
    Shi-Liang Wu
    Optimization Letters, 2024, 18 : 1005 - 1021
  • [4] A Fixed Point Iterative Method for Tensor Complementarity Problems
    Ping-Fan Dai
    Journal of Scientific Computing, 2020, 84
  • [5] A Fixed Point Iterative Method for Tensor Complementarity Problems
    Dai, Ping-Fan
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (03)
  • [6] An Fixed Point Iterative Method for Tensor Complementarity Problems
    Wei, Ping
    Li, Jianhua
    Wang, Xuezhong
    ENGINEERING LETTERS, 2023, 31 (01) : 19 - 19
  • [7] Convergence analysis of projected SOR iteration method for a class of vertical linear complementarity problems
    Cao, Yang
    Yang, Geng-Chen
    Shen, Qin-Qin
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [8] Convergence analysis of projected SOR iteration method for a class of vertical linear complementarity problems
    Yang Cao
    Geng-Chen Yang
    Qin-Qin Shen
    Computational and Applied Mathematics, 2023, 42
  • [9] A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors
    Zheng-Hai Huang
    Yu-Fan Li
    Yong Wang
    Journal of Global Optimization, 2023, 86 : 495 - 520
  • [10] A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors
    Li, Yu-Fan
    Huang, Zheng-Hai
    Wang, Yong
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 86 (02) : 495 - 520