BatchFLEX: feature-level equalization of X-batch

被引:0
|
作者
Davis, Joshua T. [1 ]
Obermayer, Alyssa N. [1 ]
Soupir, Alex C. [1 ]
Hesterberg, Rebecca S. [2 ]
Duong, Thac [1 ]
Yang, Ching-Yao [1 ]
Dao, Ken Phong [3 ]
Manley, Brandon J. [4 ]
Grass, G. Daniel [5 ]
Avram, Dorina [6 ]
Rodriguez, Paulo C. [6 ]
Fridley, Brooke L. [1 ,7 ]
Yu, Xiaoqing [1 ]
Teng, Mingxiang [1 ]
Wang, Xuefeng [1 ]
Shaw, Timothy, I [1 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Biostat & Bioinformat, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Tumor Microenvironm & Metastasis, Tampa, FL USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Malignant Hematol Dept, Tampa, FL USA
[4] H Lee Moffitt Canc Ctr & Res Inst, Dept Genitourinary Oncol, Tampa, FL USA
[5] H Lee Moffitt Canc Ctr & Res Inst, Dept Radiat Oncol, Tampa, FL USA
[6] H Lee Moffitt Canc Ctr & Res Inst, Dept Immunol, Tampa, FL USA
[7] Childrens Mercy, Dept Malignant Hematol, Kansas City, MO 64108 USA
关键词
GENE-EXPRESSION;
D O I
10.1093/bioinformatics/btae587
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Integrative analysis of heterogeneous expression data remains challenging due to variations in platform, RNA quality, sample processing, and other unknown technical effects. Selecting the approach for removing unwanted batch effects can be a time-consuming and tedious process, especially for more biologically focused investigators.Results Here, we present BatchFLEX, a Shiny app that can facilitate visualization and correction of batch effects using several established methods. BatchFLEX can visualize the variance contribution of a factor before and after correction. As an example, we have analyzed ImmGen microarray data and enhanced its expression signals that distinguishes each immune cell type. Moreover, our analysis revealed the impact of the batch correction in altering the gene expression rank and single-sample GSEA pathway scores in immune cell types, highlighting the importance of real-time assessment of the batch correction for optimal downstream analysis.Availability and implementation Our tool is available through Github https://github.com/shawlab-moffitt/BATCH-FLEX-ShinyApp with an online example on Shiny.io https://shawlab-moffitt.shinyapps.io/batch_flex/.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] FeatDANet: Feature-level Domain Adaptation Network for Semantic Segmentation
    Li, Jiao
    Shi, Wenjun
    Zhu, Dongchen
    Zhang, Guanghui
    Zhang, Xiaolin
    Li, Jiamao
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 3873 - 3880
  • [42] Feature-level exploration of a published Affymetrix GeneChip control dataset
    Irizarry, Rafael A.
    Cope, Leslie M.
    Wu, Zhijin
    GENOME BIOLOGY, 2006, 7 (08)
  • [43] Feature-Level Fusion Recognition of Space Targets With Composite Micromotion
    Zhang, Yuanpeng
    Xie, Yan
    Kang, Le
    Li, Kaiming
    Luo, Ying
    Zhang, Qun
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (01) : 934 - 951
  • [44] Feature-level image fusion technique based on wavelet transform
    Fan, ZG
    Fu, SL
    Li, RS
    Zuo, BJ
    ADVANCED MATERIALS AND DEVICES FOR SENSING AND IMAGING, 2002, 4919 : 289 - 292
  • [45] A Biometric Identification System with Kernel SVM and Feature-level Fusion
    Soviany, Sorin
    Puscoci, Sorin
    Sandulescu, Virginia
    PROCEEDINGS OF THE 2020 12TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2020), 2020,
  • [46] Feature-Level Fusion of Multimodal Physiological Signals for Emotion Recognition
    Chen, Jing
    Ru, Bin
    Xu, Lixin
    Moore, Philip
    Su, Yun
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 395 - 399
  • [47] Visualizing Feature-Level Evolution in Product Lines: A Research Preview
    Hinterreiter, Daniel
    Gruenbacher, Paul
    Praehofer, Herbert
    REQUIREMENTS ENGINEERING: FOUNDATION FOR SOFTWARE QUALITY (REFSQ 2020), 2020, 12045 : 300 - 306
  • [48] Feature-level Fusion for Depression Recognition Based on fNIRS Data
    Zheng, Shuzhen
    Lei, Chang
    Wang, Tao
    Wu, Chunyun
    Sun, Jieqiong
    Peng, Hong
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2898 - 2905
  • [49] Speech emotion classification using feature-level and classifier-level fusion
    Siba Prasad Mishra
    Pankaj Warule
    Suman Deb
    Evolving Systems, 2024, 15 : 541 - 554
  • [50] Mutual Information Regularized Feature-Level Frankenstein for Discriminative Recognition
    Liu, Xiaofeng
    Chao, Yang
    You, Jane J.
    Kuo, C-C Jay
    Kumar, B. V. K. Vijaya
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5243 - 5260