Performance prediction of experimental PEM electrolyzer using machine learning algorithms

被引:5
|
作者
Ozdemir, Safiye Nur [1 ]
Pektezel, Oguzhan [2 ]
机构
[1] Univ Sakarya, Dept Mech Engn, TR-54187 Adapazari, Turkiye
[2] Univ Tokat Gaziosmanpasa, Dept Mech Engn, TR-60250 Tokat, Turkiye
关键词
PEM water electrolyzer; Machine learning; Multilayer perceptron; Support vector machine; Random forest; WATER ELECTROLYSIS; FUEL-CELL; HYDROGEN; SIMULATION;
D O I
10.1016/j.fuel.2024.132853
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Proton exchange membrane water electrolyzer (PEMWE) is a sustainable energy conversion device that uses electrical energy to oxidize water and convert it into chemical energy (hydrogen and oxygen) and heat. Despite their numerous advantages, such as high current density, efficiency, high-purity hydrogen production, compatibility with renewable energy sources, and compact design, they have not yet matured due to durability, cost, and electrochemical performance deficiencies. Effective assessment of performance and durability is crucial for electrolyzer design and optimization. This study analyzes the electrochemical performance of PEMWE with artificial intelligence approaches using experimental data. Three different machine learning (ML) techniques- Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Random Forest (RF) were trained and tested for predicting the hydrogen flowrate and current density for PEMWE using different input parameters. These input parameters include cell voltage, temperature, torque, and water flowrate. SVM was detected to be the best technique in predicting all output parameters with a Mean Absolute Error (MAE) of 0.0317 and 0.0671 for current density and hydrogen flowrate predictions in the test set, respectively. The study results show that machine-learning algorithms can optimize operational parameters in electrolyzer control systems.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Heart Attack Prediction using Machine Learning Algorithms
    Laxamana, Romeo Jousef A.
    Vale, Joan Marie
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (05) : 1428 - 1436
  • [22] Prediction of Dental Implants Using Machine Learning Algorithms
    Alharbi, Mafawez T.
    Almutiq, Mutiq M.
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [23] Crop Yield Prediction Using Machine Learning Algorithms
    Nigam, Aruvansh
    Garg, Saksham
    Agrawal, Archit
    Agrawal, Parul
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 125 - 130
  • [24] Diabetes Disease Prediction Using Machine Learning Algorithms
    Lyngdoh, Arwatki Chen
    Choudhury, Nurul Amin
    Moulik, Soumen
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 517 - 521
  • [25] Prediction of Dental Implants Using Machine Learning Algorithms
    Alharbi, Mafawez T.
    Almutiq, Mutiq M.
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [26] Failure prediction of turbines using machine learning algorithms
    Kumar, R. Sachin
    Ram, S. Sakthiya
    Jayakar, S. Arun
    Kumar, T. K. Senthil
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 1175 - 1182
  • [28] Heart Disease Prediction Using Machine Learning Algorithms
    Mammen, Rea
    Pawar, Arti
    SMART SENSORS MEASUREMENT AND INSTRUMENTATION, CISCON 2021, 2023, 957 : 239 - 253
  • [29] Freight Cost Prediction Using Machine Learning Algorithms
    Kulkarni, Pranav
    Gala, Ishan
    Nargundkar, Aniket
    INTELLIGENT SYSTEMS AND APPLICATIONS, ICISA 2022, 2023, 959 : 507 - 515
  • [30] Failure prediction of turbines using machine learning algorithms
    Kumar, R. Sachin
    Ram, S. Sakthiya
    Jayakar, S. Arun
    Kumar, T. K. Senthil
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 1175 - 1182