Simple waves for anti-van der Waals modified Chaplygin gas in 2-D magnetohydrodynamics

被引:0
|
作者
Gaurav, Lal Pratap [1 ]
Singh, Lal Pratap [1 ]
机构
[1] Banaras Hindu Univ, Indian Inst Technol, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
关键词
characteristic-decomposition method (CDM); irrotational flow; anti-van der Waals modified Chaplygin gas (AWMCG); magnetohydrodynamics (MHD); COMPRESSIBLE EULER EQUATIONS; RAREFACTION WAVES; CHARACTERISTIC DECOMPOSITION; DARK-MATTER; UNIFICATION; ENERGY;
D O I
10.1515/zna-2024-0165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents essential findings on the reducible equations introduced by Courant and Friedrichs in their seminal work, Supersonic Flow and Shock Waves. In this paper, we discuss the presence of simple waves in a 2-D magnetohydrodynamic system with an anti-van der Waals-modified Chaplygin gas. Following the approach of Hu and Sheng (characteristic decomposition of the 2 x 2 quasilinear strictly hyperbolic systems). Appl. Math. Lett. 25(3), 262-267 (2012), and (simple waves and characteristic decompositions of quasilinear hyperbolic systems in two independent variables). Math. Methods Appl. Sci. 38(8), 1494-1505 (2015) for the characteristic decomposition of a strictly hyperbolic system, we establish the existence of simple waves for a non-reducible system. This extends Courant and Friedrichs's fundamental finding, which was initially proposed for reducible system (R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, New York, Interscience Publishers, Inc, 1948, p. 464). These results enhance our understanding of simple wave behaviour in magnetohydrodynamic systems with modified Chaplygin gas, expanding the applicability of Courant and Friedrichs's theoretical framework.
引用
收藏
页码:1117 / 1122
页数:6
相关论文
共 50 条
  • [31] Luminescence in 2D Materials and van der Waals Heterostructures
    Jie, Wenjing
    Yang, Zhibin
    Bai, Gongxun
    Hao, Jianhua
    ADVANCED OPTICAL MATERIALS, 2018, 6 (10):
  • [32] Structural superlubricity in 2D van der Waals heterojunctions
    Yuan, Jiahao
    Yang, Rong
    Zhang, Guangyu
    NANOTECHNOLOGY, 2022, 33 (10)
  • [33] 2D Van der Waals Heterostructures for Chemical Sensing
    Hou, Hui-Lei
    Anichini, Cosimo
    Samori, Paolo
    Criado, Alejandro
    Prato, Maurizio
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (49)
  • [34] Emerging 2D Materials and Their Van Der Waals Heterostructures
    Di Bartolomeo, Antonio
    NANOMATERIALS, 2020, 10 (03)
  • [35] Disorder in van der Waals heterostructures of 2D materials
    Daniel Rhodes
    Sang Hoon Chae
    Rebeca Ribeiro-Palau
    James Hone
    Nature Materials, 2019, 18 : 541 - 549
  • [36] Intercorrelated ferroelectrics in 2D van der Waals materials
    Liang, Yan
    Shen, Shiying
    Huang, Baibiao
    Dai, Ying
    Ma, Yandong
    MATERIALS HORIZONS, 2021, 8 (06) : 1683 - 1689
  • [37] SPECTRA OF H2-RARE AND D2-RARE GAS VAN-DER-WAALS COMPLEXES
    MCKELLAR, AR
    WELSH, HL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (06): : 758 - &
  • [38] Van der Waals induced molecular recognition of canonical DNA nucleobases on a 2D GaS monolayer
    Singh, Deobrat
    Panda, Pritam Kumar
    Mishra, Yogendra Kumar
    Ahuja, Rajeev
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (12) : 6706 - 6715
  • [39] The effects of gravitational and magnetic fields on the propagation of cylindrical strong shock waves in a van der Waals gas
    Anand, R. K.
    Singh, Sewa
    PHYSICA SCRIPTA, 2024, 99 (03)
  • [40] Kinematics of one-dimensional spherical shock waves in interstellar van der Waals gas clouds
    Singh, Mayank
    Chauhan, Astha
    Sharma, Kajal
    Arora, Rajan
    PHYSICS OF FLUIDS, 2020, 32 (10)