ON QUASI BI-SLANT RIEMANNIAN MAPS FROM LORENTZIAN PARA SASAKIAN MANIFOLDS

被引:0
|
作者
Prasad, Rajendra [1 ]
Kumar, Sushil [2 ]
Singh, Punit Kumar [1 ]
机构
[1] Univ Lucknow, Dept Math & Astron, Lucknow, India
[2] Shri Jai Narain Post Grad Coll, Lucknow, India
关键词
Riemannian map; Quasi bi-slant Riemannian map; Lorentzian para Sasakian manifolds; SUBMERSIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first introduce quasi bi-slant Riemannian maps and study such Riemannian maps from Lorentzian para Sasakian manifolds into Riemannian manifolds. We give necessary and sufficient conditions for the integrability of the distributions which are involved in the definition of the quasi bi-slant Riemannian map and investigate their leaves. We also obtain totally geodesic conditions for such maps. Moreover, we provide some examples for this notion.
引用
收藏
页码:307 / 320
页数:14
相关论文
共 50 条
  • [21] Warped Product Quasi Bi-Slant Submanifolds of Kaehler Manifolds
    Lone, M. A.
    Majeed, P.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (02) : 718 - 727
  • [22] A note on quasi-bi-slant submanifolds of Sasakian manifolds
    Rajendra Prasad
    Sandeep Kumar Verma
    [J]. Arabian Journal of Mathematics, 2021, 10 : 685 - 698
  • [23] On Pointwise Quasi Bi-Slant Submanifolds
    Akyol, Mehmet Akif
    Beyendi, Selahattin
    Fatima, Tanveer
    Ali, Akram
    [J]. FILOMAT, 2022, 36 (19) : 6687 - 6697
  • [24] A note on quasi-bi-slant submanifolds of Sasakian manifolds
    Prasad, Rajendra
    Verma, Sandeep Kumar
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (03) : 685 - 698
  • [25] On Lorentzian para-Sasakian manifolds
    Mishra, IK
    Ojha, RH
    [J]. GEOMETRY ANALYSIS AND APPLICATIONS, 2001, : 139 - 143
  • [26] On Lorentzian para-Sasakian manifolds
    Al-Aqeel, A
    De, UC
    Ghosh, GC
    [J]. KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2004, 31 (02): : 1 - 13
  • [27] On (ε) - Lorentzian para-Sasakian Manifolds
    Prakasha, D. G.
    Prakash, A.
    Nagaraja, M.
    Veeresha, P.
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2022, 17 (02): : 243 - 252
  • [28] Conformal bi-slant submersion from Kenmotsu manifolds
    Al-Dayel, Ibrahim
    Shuaib, Mohammad
    [J]. AIMS MATHEMATICS, 2023, 8 (12): : 30269 - 30286
  • [29] Conformal quasi-bi-slant Riemannian maps
    Kumar, Sushil
    Kumar, Sumeet
    Kumar, Deepak
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 28 (04): : 335 - 349
  • [30] V-Quasi-Bi-Slant Riemannian Maps
    Kumar, Sushil
    Bilal, Mohd
    Prasad, Rajendra
    Haseeb, Abdul
    Chen, Zhizhi
    [J]. SYMMETRY-BASEL, 2022, 14 (07):