Differentiable programming for gradient-based control and optimization in physical systems

被引:0
|
作者
Lopez-Montero, Daniel [1 ]
Hernando-Sanchez, Patricia [1 ]
Limones-Andrade, Maria [1 ]
Garcia-Navarro, Adolfo [1 ]
Valverde, Adrian [2 ]
Parra, Juan Manuel Sanchez [2 ]
Aunon, Juan M. [1 ]
机构
[1] GMV, Dept Artificial Intelligence & Big Data, Isaac Newton 11, Tres Cantos 28760, Madrid, Spain
[2] Autovia Mediterraneo, Salida 596, Alhama De Murcia 30840, Murcia, Spain
来源
关键词
Control theory; Gradient descent; Optimization; Differential programming; Digital twins; RENEWABLE ENERGY;
D O I
10.1016/j.segan.2024.101495
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents an exploration of the application of control theory, particularly utilizing a gradient- based algorithm, to automate and optimize the operation of photovoltaic panels and refrigeration systems in warehouse environments. The study emphasizes achieving coordination between energy generation and consumption, specifically harnessing surplus solar energy for efficient refrigeration. The complex interplay between fluctuating solar irradiance, thermal dynamics of the warehouse, and refrigeration needs underscores the significance of control theory in designing algorithms to dynamically adjust PV panel output and refrigeration system operation. The paper discusses foundational control theory principles, proposes a tailored framework for warehouse operations, and highlights the potential for sustainable energy practices. This paper explores the use of data-driven approaches based on NeuralODEs vs classical ones using physics equations.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Gradient-Free and Gradient-Based Optimization of a Radial Turbine
    Lachenmaier, Nicolas
    Baumgaertner, Daniel
    Schiffer, Heinz-Peter
    Kech, Johannes
    [J]. INTERNATIONAL JOURNAL OF TURBOMACHINERY PROPULSION AND POWER, 2020, 5 (03)
  • [42] Structural optimization by gradient-based neural networks
    Iranmanesh, A
    Kaveh, A
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 46 (02) : 297 - 311
  • [43] Forward and Reverse Gradient-Based Hyperparameter Optimization
    Franceschi, Luca
    Donini, Michele
    Frasconi, Paolo
    Pontil, Massimiliano
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [44] Gradient-Based Optimization of Chaotic Panel Flutter
    Stanford, Bret K.
    [J]. AIAA JOURNAL, 2023, 61 (05) : 2234 - 2240
  • [45] Gradient-Based Cuckoo Search for Global Optimization
    Fateen, Seif-Eddeen K.
    Bonilla-Petriciolet, Adrian
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [46] Gradient-Based Optimization of PCFM Radar Waveforms
    Mohr, Charles A.
    McCormick, Patrick M.
    Topliff, Charles A.
    Blunt, Shannon D.
    Baden, J. Michael
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (02) : 935 - 956
  • [47] COMBINING GRADIENT-BASED OPTIMIZATION WITH STOCHASTIC SEARCH
    Zhou, Enlu
    Hu, Jiaqiao
    [J]. 2012 WINTER SIMULATION CONFERENCE (WSC), 2012,
  • [48] Gradient-Based Trajectory Optimization With Learned Dynamics
    Sukhija, Bhavya
    Kohler, Nathanael
    Zamora, Miguel
    Zimmermann, Simon
    Curi, Sebastian
    Krause, Andreas
    Coros, Stelian
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 1011 - 1018
  • [49] A Gradient-Based Inspection Path Optimization Approach
    Bogaerts, Boris
    Sels, Seppe
    Vanlanduit, Steve
    Penne, Rudi
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (03): : 2646 - 2653
  • [50] Seismic design of multiple-rocking systems: A gradient-based optimization approach
    Marzok, Ameer
    Lavan, Oren
    [J]. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2021, 50 (13): : 3460 - 3482