Entanglement criterion and strengthened Bell inequalities based on the Pearson correlation

被引:0
|
作者
Tserkis, Spyros [1 ,4 ]
Assad, Syed M. [2 ,5 ]
Conti, Andrea [3 ,6 ]
Win, Moe Z. [4 ,7 ,8 ,9 ,10 ,11 ,12 ]
机构
[1] MIT, Wireless Informat & Network Sci Lab, Cambridge, MA 02139 USA
[2] Australian Natl Univ, Ctr Quantum Computat & Commun Technol, Dept Quantum Sci, Canberra, ACT 2601, Australia
[3] Univ Ferrara, Dept Engn, I-44122 Ferrara, Italy
[4] MIT, Lab Informat & Decis Syst LIDS, Cambridge, MA 02139 USA
[5] ASTAR, Inst Mat Res & Engn IMRE, ASTAR Quantum Innovat Ctr QInC, Singapore, Singapore
[6] Consorzio Nazl Interuniv Telecomunicaz CNIT, Parma, Italy
[7] Massachusetts Inst Technol MIT, Wireless Informat & Network Sci Lab WINSLab, Cambridge, MA USA
[8] Wireless Informat & Network Sci Lab WINSLab, North Brunswick, NJ USA
[9] Inst Data Syst & Soc IDSS, Cambridge, MA USA
[10] AeroAstro, Dept Aeronaut & Astronaut, Cambridge, MA USA
[11] Schwarzman Coll Comp SCC, Cambridge, MA USA
[12] Inst Soldier Nanotechnol ISN, Cambridge, MA USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Quantum correlations; Entanglement identification; Strengthened Bell inequalities; SEPARABILITY CRITERION; QUANTUM; INSEPARABILITY; STATES;
D O I
10.1016/j.physleta.2024.129635
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement is a property associated with quantum correlations and represents a key resource in several applications of quantum technology. Therefore, the ability to characterize entanglement is important at both foundational and practical levels. This work demonstrates how the Pearson correlation coefficient can be used to establish an entanglement criterion for quantum systems of two qubits. This criterion is then used to prove that a proposed conjecture is correct for the case of two qubits, which allows to efficiently identify entanglement without the need of complete prior knowledge of the quantum state. For higher dimensional quantum states the conjecture is demonstrated to be false through counter-examples, therefore a modified version of it is proposed. Finally, two new strengthened Bell inequalities are derived, which are also efficient in entanglement identification.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [41] Quantum entanglement and Bell inequalities in Heisenberg spin chains
    Wang, XG
    Zanardi, P
    PHYSICS LETTERS A, 2002, 301 (1-2) : 1 - 6
  • [42] Bell Bi-Inequalities for Bell Local Correlation Tensors
    Zhu, Wen-Qian
    Hu, Di
    Guo, Zhi-Hua
    Cao, Huai-Xin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (03)
  • [43] Bell Bi-Inequalities for Bell Local Correlation Tensors
    Wen-Qian Zhu
    Di Hu
    Zhi-Hua Guo
    Huai-Xin Cao
    International Journal of Theoretical Physics, 62
  • [44] Multipartite bound entanglement and three-setting Bell inequalities
    Kaszlikowski, D
    Kwek, LC
    Chen, JL
    Oh, CH
    PHYSICAL REVIEW A, 2002, 66 (05): : 5
  • [45] Bell inequalities and entanglement at quantum phase transitions in the XXZ model
    Justino, L.
    de Oliveira, Thiago R.
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [46] Relation between entanglement measures and Bell inequalities for three qubits
    Emary, C
    Beenakker, CWJ
    PHYSICAL REVIEW A, 2004, 69 (03): : 032317 - 1
  • [47] Entanglement and Bell inequalities violation in H → ZZ with anomalous coupling
    Bernal, Alexander
    Caban, Pawel
    Rembielinski, Jakub
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (11):
  • [48] Multipartite bound entanglement and three-setting Bell inequalities
    Kaszlikowski, Dagomir
    Kwek, L.C.
    Chen, Jingling
    Oh, C.H.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (05): : 1 - 052309
  • [49] Bell’s Inequalities and Methods of Quantifying Measures of Entanglement Correlations
    Paul Bracken
    International Journal of Theoretical Physics, 2014, 53 : 2819 - 2826
  • [50] Molecular orientation entanglement and temporal Bell-type inequalities
    Milman, P.
    Keller, A.
    Charron, E.
    Atabek, O.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 53 (03): : 383 - 392