Sample size effects on landslide susceptibility models: A comparative study of heuristic, statistical, machine learning, deep learning and ensemble learning models with SHAP analysis

被引:1
|
作者
Yang, Shilong [1 ]
Tan, Jiayao [1 ]
Luo, Danyuan [1 ]
Wang, Yuzhou [2 ,3 ]
Guo, Xu [1 ]
Zhu, Qiuyu [1 ,4 ]
Ma, Chuanming [1 ]
Xiong, Hanxiang [1 ]
机构
[1] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China
[2] Eastern Inst Technol, Eastern Inst Adv Study, Ningbo 315200, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China
[4] Hangzhou Yuhang Urban Dev Investment Grp Co Ltd, Hangzhou 311100, Peoples R China
关键词
Landslide susceptibility assessment; Model robustness; Inventory sample size; XGBoost and LightGBM; Explainable machine learning; ANALYTICAL HIERARCHY PROCESS; FREQUENCY RATIO MODEL; LOGISTIC-REGRESSION; NEURAL-NETWORKS; GIS; AREA; HAZARD; PROVINCE; BASIN; INDEX;
D O I
10.1016/j.cageo.2024.105723
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In landslide susceptibility assessment (LSA), inventory incompleteness impacts the accuracy of different models to varying degrees. However, this area remains under-researched. This study investigated six LSA models from heuristic, statistical, machine learning and ensemble learning models (analytical hierarchy process (AHP), frequency ratio (FR), logistic regression (LR), Keras based deep learning (KBDL), XGBoost, and LightGBM) across six different sample sizes (100%, 90%, 75%, 50%, 25%, and 10%). Results revealed that XGBoost and LightGBM consistently outperformed other models across all sample sizes. The LR and KBDL models followed, while FR model was the most affected by sample size variations. AHP, an empirical model, remained unaffected by sample size. Through SHapley Additive exPlanations (SHAP) analysis, elevation, NDVI, slope, land use, and distance to roads and rivers emerged as pivotal indicators for landslide occurrences in the study area, suggesting that human activities significantly influence these events. Five time-varying indicators regarding human activity and climate validated this inference, which provides a new method to identify landslide triggering factors, especially in areas of intense human activity. Based on the findings, a comprehensive framework for LSA is proposed to assist landslide managers in making informed decisions. Future research should focus on expanding model diversity to address the effects of sample size, enhancing the adaptability of the LSA framework, deepening the analysis of human activity impacts on landslides using explainable machine learning techniques, addressing temporal inventory incompleteness in LSA, and critically evaluating model sensitivity to sample size variations across multiple disciplines.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Comparative Study of Shallow Machine Learning Models and Deep Learning Models for Landslide Susceptibility Assessment Based on Imbalanced Data
    Xu, Shiluo
    Song, Yingxu
    Hao, Xiulan
    FORESTS, 2022, 13 (11):
  • [2] Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping
    Huang, Faming
    Cao, Zhongshan
    Guo, Jianfei
    Jiang, Shui-Hua
    Li, Shu
    Guo, Zizheng
    CATENA, 2020, 191
  • [3] Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data
    Hussain, Muhammad Afaq
    Chen, Zhanlong
    Zheng, Ying
    Zhou, Yulong
    Daud, Hamza
    REMOTE SENSING, 2023, 15 (19)
  • [4] A comparative study of regional landslide susceptibility mapping with multiple machine learning models
    Wang, Yunhao
    Wang, Luqi
    Liu, Songlin
    Liu, Pengfei
    Zhu, Zhengwei
    Zhang, Wengang
    GEOLOGICAL JOURNAL, 2024, 59 (09) : 2383 - 2400
  • [5] Assessment of Landslide Susceptibility using Geospatial Techniques: A Comparative Evaluation of Machine Learning and Statistical Models
    Raut, Subrata
    Dutta, Dipanwita
    Bera, Debarati
    Samanta, Rajeeb
    GEOLOGICAL JOURNAL, 2024,
  • [6] Application of Ensemble-Based Machine Learning Models to Landslide Susceptibility Mapping
    Kadavi, Prima Riza
    Lee, Chang-Wook
    Lee, Saro
    REMOTE SENSING, 2018, 10 (08)
  • [7] Selection of contributing factors for predicting landslide susceptibility using machine learning and deep learning models
    Chen, Cheng
    Fan, Lei
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023,
  • [8] Advanced landslide susceptibility mapping and analysis of driving mechanisms using ensemble machine learning models
    Maashi, Mashael
    Alzaben, Nada
    Negm, Noha
    Venkatesan, V.
    Begum, S. Sabarunisha
    Geetha, P.
    JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2025, 151
  • [9] Exploring different approaches for landslide susceptibility zonation mapping in Manipur: a comparative study of AHP, FR, machine learning, and deep learning models
    Kshetrimayum, Arvindd
    H, Akash
    JOURNAL OF SPATIAL SCIENCE, 2024,
  • [10] Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models
    Nguyen, Duc-Dam
    Tiep, Nguyen Viet
    Bui, Quynh-Anh Thi
    Van Le, Hiep
    Prakash, Indra
    Costache, Romulus
    Pandey, Manish
    Pham, Binh Thai
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2025, 142 (01): : 467 - 500