Molecular Dynamics Study on Wear Resistance of High Entropy Alloy Coatings Considering the Effect of Temperature

被引:0
|
作者
Zhang, Xianhe [1 ,2 ]
Yang, Zhenrong [2 ]
Deng, Yong [3 ,4 ]
机构
[1] Shijiazhuang Tiedao Univ, Hebei Key Lab Mech Intelligent Mat & Struct, Shijiazhuang 050043, Peoples R China
[2] Shijiazhuang Tiedao Univ, Hebei Res Ctr Basic Discipline Engn Mech, Shijiazhuang 050043, Peoples R China
[3] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
[4] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518063, Peoples R China
基金
中国国家自然科学基金;
关键词
high entropy alloy coating; wear resistance; temperature; dislocation density; lattice disorder; ELASTIC-MODULUS; BEHAVIOR; MICROSTRUCTURE; INDENTATION; PERFORMANCE; MECHANISMS; HARDNESS;
D O I
10.3390/ma17163911
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High entropy alloys have excellent wear resistance, so they have great application prospects in the fields of wear resistance and surface protection. In this study, the wear resistance of the FeNiCrCoCu high entropy alloy coating was systematically analyzed by the molecular dynamics method. FeNiCrCoCu high entropy alloy was used as a coating material to adhere to the surface of a Cu matrix. The friction and nanoindentation simulation of this coating material were carried out by controlling the ambient temperature. The influence of temperature on its friction properties was analyzed on five aspects: lattice structure, dislocation evolution, friction coefficient, hardness, and elastic modulus. The results show that with the increase of temperature, the disorder of the lattice structure increases, which leads to an increase of the tangential force and friction coefficient in the friction process. At 300 K and 600 K, the ordered lattice structure of the high entropy alloy coating material is basically the same, and thus its hardness is basically the same. However, the dislocation density at 600 K is significantly reduced compared with that at 300 K, resulting in an increase of the elastic modulus of the material from 173 GPa to 219 GPa. At temperatures of 900 K and 1200 K, lattice disorder takes place rapidly, and dislocation density also decreases significantly, resulting in a significant decrease in the hardness and elastic modulus of the material. When the temperature reaches 900 K, the wear resistance of the FeNiCrCoCu high entropy alloy coating decreases sharply. This work is of great value in the analysis of wear resistance of high entropy alloys at high temperature.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Wear and corrosion of CoCrFeNiMnTix high entropy alloy coatings by laser cladding
    Wang, D. C.
    Wu, C. . L.
    Zhang, S.
    Zhang, C. H.
    Zhang, D. X.
    Sun, X. Y.
    MATERIALS SCIENCE AND TECHNOLOGY, 2023, 39 (17) : 2811 - 2823
  • [42] A Study on Outstanding High-Temperature Wear Resistance of High-Entropy Alloys
    Hamdi, Hedayat
    Abedi, Hamid Reza
    Zhang, Yong
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (12)
  • [43] Effect of Aluminum Content on Microstructure and Wear Resistance of CuCrFeMnTiAlx High-Entropy Alloy
    Nong Zhisheng
    Li Diansheng
    Zhu Jingchuan
    Yu Hailing
    Lai Zhonghong
    RARE METAL MATERIALS AND ENGINEERING, 2011, 40 : 550 - 554
  • [44] Extra strengthening and Bauschinger effect in gradient high-entropy alloy: A molecular dynamics study
    Du, Xin
    Shuang, Siyao
    Zhao, Jianfeng
    Fu, Zhenghong
    Kan, Qianhua
    Zhang, Xu
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 264
  • [45] Microstructure and Wear Resistance of CoCrFeNiTix High Entropy Alloy Coating
    Tian, Zhigang
    Li, Xinmei
    Qin, Zhong
    Wang, Xiaohui
    Liu, Weibin
    Hung, Yong
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2023, 37 (03): : 219 - 227
  • [46] An Assessment of the High-Temperature Oxidation Resistance of Selected Thermal Sprayed High Entropy Alloy Coatings
    Xiao Zhang
    Nannan Zhang
    Bowei Xing
    Shuo Yin
    Journal of Thermal Spray Technology, 2022, 31 : 1386 - 1403
  • [47] Microstructure evolution and high temperature wear resistance of in-situ synthesized carbides reinforced NiCoFeCrSiMo high entropy alloy coatings fabricated by laser cladding
    Zhang, Hui
    Liu, Gang
    Ren, Nannan
    Cheng, Nuo
    Dong, Zhengxue
    Ma, Qunshuang
    SURFACE & COATINGS TECHNOLOGY, 2023, 464
  • [48] Effect of alloying element content, temperature, and strain rate on the mechanical behavior of NbTiZrMoV high entropy alloy: A molecular dynamics study
    Islam, Md. Riazul
    Islam, Jahirul
    Hasan, Rahat
    Hasan, Mahmudul
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [49] WEAR RESISTANCE OF STELLITE 6 COATINGS AT HIGH TEMPERATURE
    Kumar, Mukund
    Kumar, Satish
    SURFACE REVIEW AND LETTERS, 2024, 31 (12)
  • [50] An Assessment of the High-Temperature Oxidation Resistance of Selected Thermal Sprayed High Entropy Alloy Coatings
    Zhang, Xiao
    Zhang, Nannan
    Xing, Bowei
    Yin, Shuo
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2022, 31 (04) : 1386 - 1403