A taxon-rich and genome-scale phylogeny of Opisthokonta

被引:0
|
作者
Liu, Hongyue [1 ,2 ]
Steenwyk, Jacob L. [3 ,4 ]
Zhou, Xiaofan [5 ]
Schultz, Darrin T. [6 ,7 ,8 ]
Kocot, Kevin M. [9 ,10 ]
Shen, Xing-Xing [11 ,12 ]
Rokas, Antonis [13 ,14 ]
Li, Yuanning [1 ,2 ]
机构
[1] Shandong Univ, Inst Marine Sci & Technol, Qingdao, Peoples R China
[2] Qingdao Marine Sci & Technol Ctr, Lab Marine Biol & Biotechnol, Qingdao, Peoples R China
[3] Univ Calif Berkeley, Howards Hughes Med Inst, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA USA
[5] South China Agr Univ, Integrat Microbiol Res Ctr, Guangdong Lab Lingnan Modern Agr, Guangdong Prov Key Lab Microbial Signals & Dis Con, Guangzhou, Peoples R China
[6] Univ Vienna, Dept Neurosci & Dev Biol, Vienna, Austria
[7] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA USA
[8] Monterey Bay Aquarium Res Inst, Moss Landing, CA USA
[9] Univ Alabama, Dept Biol Sci, Tuscaloosa, AL USA
[10] Alabama Museum Nat Hist, Tuscaloosa, AL USA
[11] Zhejiang Univ, Inst Insect Sci, Hangzhou, Peoples R China
[12] Zhejiang Univ, Ctr Evolut & Org Biol, Hangzhou, Peoples R China
[13] Vanderbilt Univ, Dept Biol Sci, Nashville, TN 37235 USA
[14] Vanderbilt Univ, Vanderbilt Evolut Studies Initiat, Nashville, TN USA
基金
美国国家科学基金会; 欧洲研究理事会; 中国国家自然科学基金; 美国国家卫生研究院; 国家重点研发计划;
关键词
MOLECULAR PHYLOGENETICS; BILATERIAN ANIMALS; SISTER GROUP; TREE; FUNGAL; EVOLUTION; ORIGIN; GENES; LOPHOTROCHOZOA; CLASSIFICATION;
D O I
10.1371/journal.pbio.3002794
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ancient divergences within Opisthokonta-a major lineage that includes organisms in the kingdoms Animalia, Fungi, and their unicellular relatives-remain contentious. To assess progress toward a genome-scale Opisthokonta phylogeny, we conducted the most taxon rich phylogenomic analysis using sets of genes inferred with different orthology inference methods and established the geological timeline of Opisthokonta diversification. We also conducted sensitivity analysis by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. We found that approximately 85% of internal branches were congruent across data matrices and the approaches used. Notably, the use of different orthology inference methods was a substantial contributor to the observed incongruence: analyses using the same set of orthologs showed high congruence of 97% to 98%, whereas different sets of orthologs resulted in somewhat lower congruence (87% to 91%). Examination of unicellular Holozoa relationships suggests that the instability observed across varying gene sets may stem from weak phylogenetic signals. Our results provide a comprehensive Opisthokonta phylogenomic framework that will be useful for illuminating ancient evolutionary episodes concerning the origin and diversification of the 2 major eukaryotic kingdoms and emphasize the importance of investigating effects of orthology inference on phylogenetic analyses to resolve ancient divergences. Opisthokonta is the major lineage that includes animals, fungi, and their unicellular relatives, but some ancient divergences remain contentious. This study presents a genome-scale phylogeny and establishes the geological timeline of opisthokont diversification.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Genome-scale antibody responses in TB
    Maria L Gennaro
    BMC Proceedings, 4 (Suppl 3)
  • [32] Genome-Scale Modeling of Thermophilic Microorganisms
    Dahal, Sanjeev
    Poudel, Suresh
    Thompson, R. Adam
    NETWORK BIOLOGY, 2017, 160 : 103 - 119
  • [33] Genome-scale neurogenetics: methodology and meaning
    Steven A McCarroll
    Guoping Feng
    Steven E Hyman
    Nature Neuroscience, 2014, 17 : 756 - 763
  • [34] Randomizing Genome-Scale Metabolic Networks
    Samal, Areejit
    Martin, Olivier C.
    PLOS ONE, 2011, 6 (07):
  • [35] Genome-scale reconstruction of Corynebacterium glutamicum
    Kjeldsen, Kjeld Raunkjaer
    Nielsen, Jens
    JOURNAL OF BIOTECHNOLOGY, 2007, 131 (02) : S2 - S2
  • [36] Genome-scale exploration of protein interactions
    Colas, P
    M S-MEDECINE SCIENCES, 2000, 16 (01): : 50 - 56
  • [37] Genome-scale compositional comparisons in eukaryotes
    Gentles, AJ
    Karlin, S
    GENOME RESEARCH, 2001, 11 (04) : 540 - 546
  • [38] Future perspectives of genome-scale sequencing
    Steyaert, Wouter
    Callens, Steven
    Coucke, Paul
    Dermaut, Bart
    Hemelsoet, Dimitri
    Terryn, Wim
    Poppe, Bruce
    ACTA CLINICA BELGICA, 2018, 73 (01) : 7 - 10
  • [39] Genome-scale resources for Thermoanaerobacterium saccharolyticum
    Currie, Devin H.
    Raman, Babu
    Gowen, Christopher M.
    Tschaplinski, Timothy J.
    Land, Miriam L.
    Brown, Steven D.
    Covalla, Sean F.
    Klingeman, Dawn M.
    Yang, Zamin K.
    Engle, Nancy L.
    Johnson, Courtney M.
    Rodriguez, Miguel
    Shaw, A. Joe
    Kenealy, William R.
    Lynd, Lee R.
    Fong, Stephen S.
    Mielenz, Jonathan R.
    Davison, Brian H.
    Hogsett, David A.
    Herring, Christopher D.
    BMC SYSTEMS BIOLOGY, 2015, 9
  • [40] Genome-scale engineering in probiotic organisms
    Mansell, Thomas
    Rothstein, Samuel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251