Blind non-linear spectral unmixing with spatial coherence for hyper and multispectral images

被引:0
|
作者
Mendoza-Chavarria, Juan N. [1 ]
Cruz-Guerrero, Ines A. [1 ,2 ,3 ]
Gutierrez-Navarro, Omar [4 ]
Leon, Raquel [5 ]
Ortega, Samuel [5 ,6 ]
Fabelo, Himar [5 ,7 ]
Callico, Gustavo M. [5 ]
Campos-Delgado, Daniel Ulises [1 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Ciencias, San Luis Potosi 78290, Mexico
[2] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO 80045 USA
[3] Univ Colorado, Childrens Hosp Colorado, Dept Pediat Plast & Reconstruct Surg, Anschutz Med Campus, Aurora, CO 80045 USA
[4] Univ Autonoma Aguascalientes, Dept Ingn Biomed, Aguascalientes, Mexico
[5] Univ Las Palmas Gran Canaria, Inst Appl Microelect IUMA, Las Palmas Gran Canaria 35017, Spain
[6] Norwegian Inst Food Fisheries & Aquaculture Res NO, N-9019 Tromso, Norway
[7] Fdn Canaria Inst Invest Sanitaria Canarias FIISC, Las Palmas Gran Canaria 35012, Spain
关键词
Non-linear unmixing; Hyperspectral imaging; Multispectral imaging; Multi-linear model; Total variation; TOTAL VARIATION REGULARIZATION; COMPONENT ANALYSIS; CLASSIFICATION; ALGORITHM; MODEL;
D O I
10.1016/j.jfranklin.2024.107282
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi and hyperspectral images have become invaluable sources of information, revolutionizing various fields such as remote sensing, environmental monitoring, agriculture and medicine. In this expansive domain, the multi-linear mixing model (MMM) is a versatile tool to analyze spatial and spectral domains by effectively bridging the gap between linear and non-linear interactions of light and matter. This paper introduces an upgraded methodology that integrates the versatility of MMM in non-linear spectral unmixing, while leveraging spatial coherence (SC) enhancement through total variation theory to mitigate noise effects in the abundance maps. Referred to as non-linear extended blind end-member and abundance extraction with SC (NEBEAE-SC), the proposed methodology relies on constrained quadratic optimization, cyclic coordinate descent algorithm, and the split Bregman formulation. The validation of NEBEAE-SC involved rigorous testing on various hyperspectral datasets, including a synthetic image, remote sensing scenarios, and two biomedical applications. Specifically, our biomedical applications are focused on classification tasks, the first addressing hyperspectral images of in-vivo brain tissue, and the second involving multispectral images of ex-vivo human placenta. Our results demonstrate an improvement in the abundance estimation by NEBEAE-SC compared to similar algorithms in the state-of-the-art by offering a robust tool for non-linear spectral unmixing in diverse application domains.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] NON-LINEAR APPROACH IN MULTISPECTRAL DATA CLASSIFICATION
    Nikolov, Hristo
    AEROSPACE RESEARCH IN BULGARIA, 2005, 20 : 47 - 50
  • [42] Blind spectral unmixing by local maximization of non-Gaussianity
    Caiafa, C. F.
    Salerno, E.
    Proto, Ax
    Fiumi, L.
    SIGNAL PROCESSING, 2008, 88 (01) : 50 - 68
  • [43] UNMamba: Cascaded Spatial-Spectral Mamba for Blind Hyperspectral Unmixing
    Chen, Dong
    Zhang, Junping
    Li, Jiaxin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [44] Using multispectral imagery and linear spectral unmixing techniques for estimating crop yield variability
    Yang, C.
    Everitt, J. H.
    Bradford, J. M.
    TRANSACTIONS OF THE ASABE, 2007, 50 (02): : 667 - 674
  • [45] Comparison of linear and nonlinear spectral unmixing approaches: a case study with multispectral TM imagery
    Yu, Jie
    Chen, Dongmei
    Lin, Yi
    Ye, Su
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (03) : 773 - 795
  • [46] Using multispectral imagery and linear spectral unmixing techniques for estimating crop yield variability
    Yang, Chenghai
    Everitt, James H.
    Bradford, Joe M.
    Transactions of the ASABE, 2007, 50 (02) : 667 - 674
  • [47] Non-linear unmixing of hyperspectral images using multiple-kernel self-organising maps
    Rashwan, Shaheera
    Dobigeon, Nicolas
    Sheta, Walaa
    Hassan, Hanan
    IET IMAGE PROCESSING, 2019, 13 (12) : 2190 - 2195
  • [48] Supervised feature selection for linear and non-linear regression of L*a*b* color from multispectral images of meat
    Sharifzadeh, Sara
    Clemmensen, Line H.
    Borggaard, Claus
    Stoier, Susanne
    Ersboll, Bjame K.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2014, 27 : 211 - 227
  • [49] Matrix Cofactorization for Joint Spatial-Spectral Unmixing of Hyperspectral Images
    Lagrange, Adrien
    Fauvel, Mathieu
    May, Stephane
    Dobigeon, Nicolas
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4915 - 4927
  • [50] The effects of misregistration between hyperspectral and panchromatic images on linear spectral unmixing
    Cheng, Xiaoyu
    Wang, Yueming
    Jia, Jianxin
    Wen, Maoxing
    Shu, Rong
    Wang, Jianyu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (22) : 8859 - 8886