Improving thermal performance of half-cylindrical solar stills with convex/ corrugated absorbers, wick materials, reflector, and nano-enhanced phase change materials

被引:7
|
作者
Abdullah, A. S. [1 ,2 ]
Alqsair, Umar F. [1 ]
Alotaibi, Fahad F. [1 ]
Alrwuais, Faisal K. [1 ]
Omara, Z. M. [3 ]
Essa, Fadl A. [3 ]
机构
[1] Prince Sattam bin Abdulaziz Univ, Coll Engn Al Kharj, Dept Mech Engn, Al Kharj 11942, Saudi Arabia
[2] Tanta Univ, Fac Engn, Mech Power Engn Dept, Tanta 31521, Egypt
[3] Kafrelsheikh Univ, Fac Engn, Mech Engn Dept, Kafrelsheikh 33516, Egypt
关键词
Cylindrical solar still; Reflector; Condensation; Ag nanoparticles-paraffin wax composite; Convex liner; ENERGY; NANOFLUIDS; PREDICTION; UNIT; CONDENSER; DESIGN; SYSTEM;
D O I
10.1016/j.est.2024.113462
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study explored the influence of various modifications on the performance of a half-cylindrical solar still (HCYSS). The effectiveness of each modification was assessed by comparing its distillate yield to a baseline configuration. The modifications included: a convex surface absorber, different wick materials (cotton and jute), a corrugated convex surface absorber, and phase changing material (PCM)-silver (Ag) composite. The experimental outcomes established that the HCYSS itself achieved a 55 % improvement in productivity compared to a conventional solar still (CSS). Furthermore, the use of a convex absorber in the HCYSS significantly increased the yield to 6300 ml/m(2), representing a 94 % enhancement over the 3250 ml/m(2) collected by the CSS. The corrugated convex HCYSS exhibited an even greater yield increase of 123 % compared to the baseline CSS. The most significant performance improvement was achieved by incorporating both reflector and a PCM-Ag composite into the HCYSS design. This configuration resulted in 184 % increase in productivity and efficiency of 61.5 %. These findings suggest that the HCYSS with optimized design features holds promise for enhancing solar desalination efficiency.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges
    Reji Kumar R.
    Samykano M.
    Pandey A.K.
    Kadirgama K.
    Tyagi V.V.
    Renewable and Sustainable Energy Reviews, 2020, 133
  • [22] Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges
    Kumar, R. Reji
    Samykano, M.
    Pandey, A. K.
    Kadirgama, K.
    Tyagi, V. V.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 133
  • [23] A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials
    Williams, Joseph D.
    Peterson, G. P.
    NANOMATERIALS, 2021, 11 (10)
  • [24] Nano-Enhanced Phase Change Materials in Latent Heat Thermal Energy Storage Systems: A Review
    Tofani, Kassianne
    Tiari, Saeed
    ENERGIES, 2021, 14 (13)
  • [25] Thermal regulation of photovoltaics using various nano-enhanced phase change materials: An experimental study
    Jamil, Furqan
    Khiadani, Mehdi
    Ali, Hafiz Muhammad
    Nasir, Muhammad Ali
    Shoeibi, Shahin
    JOURNAL OF CLEANER PRODUCTION, 2023, 414
  • [26] Thermal regulation and performance assessment of a hybrid photovoltaic/thermal system using different combinations of nano-enhanced phase change materials
    Abdelrazik, A. S.
    Saidur, R.
    Al-Sulaiman, F. A.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 215
  • [27] Comparative Study and Recommendations for Thermal Performance Enhancement of Energy Storage Materials: Mono, Binary and Ternary Nano-enhanced Organic Phase Change Materials
    Kalbande, Vednath P.
    Sakharwade, Sanjay G.
    Nandanwar, Yogesh
    Choudhari, Manoj S.
    Himte, Rakesh
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF MECHANICAL ENGINEERING, 2024,
  • [28] Investigation of hybrid nano-enhanced phase change materials by experimental evaluation and optimizing thermal performance for energy storage applications
    Deshpande, Pradnya Sameer
    Jyothilakshmi, R.
    Srikantha, N.
    Sridhar, B. S.
    NANO EXPRESS, 2025, 6 (01):
  • [29] Development and preparation of novel nano-enhanced organic eutectic phase change materials for low-temperature solar thermal applications
    D, Deepak
    Behura, A. K.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 6537 - 6554
  • [30] Experimental analysis of two stage solar still integrated with thermal storage based solar collector using nano-enhanced phase change materials
    Nakade, Aniket
    Aglawe, Anurag
    More, Kalash
    Kalbande, Vednath P.
    DESALINATION AND WATER TREATMENT, 2024, 320