Modification of porous bismuth molybdate for high removal of antibiotics and H2O2 production

被引:0
|
作者
Li, Shilin [1 ]
Tian, Yunhui [1 ]
Zhang, Guangxin [1 ]
机构
[1] Shandong Univ Sci & Technol, Sch Mat Sci & Engn, Qingdao 266590, Peoples R China
关键词
PHOTOCATALYTIC ACTIVITY; COMPOSITE;
D O I
10.1039/d4cy00906a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The regulations of the Bi2MoO6 structure, such as dopant incorporation, composite formation, and synthesis condition modification, have garnered significant attention due to their implications for enhancing photocatalytic activity. In this study, potassium acetate was introduced into the synthesis of Bi(2)MoO(6)via a one-pot hydrothermal method to augment its photocatalytic efficiency. It was observed that the addition of potassium acetate effectively modulated the microstructure of Bi2MoO6. XRD and XPS analyses confirmed the incorporation of K+ ions into the [MoO4](2-) and [Bi2O2](2+) layers, significantly influencing the phase structure and morphology of Bi2MoO6. Controlled addition of potassium acetate improved the dispersibility of Bi2MoO6, whereas excessive amounts led to a phase transition from Bi2MoO6 to Bi3.64Mo0.36O6.55. The antibiotic degradation rate and H2O2 yield were used to evaluate the catalytic performance of the catalyst. Bi2MoO6 modified with potassium acetate exhibited higher photocatalytic efficiency than unmodified Bi2MoO6. Specifically, the optimal BMO-1 sample exhibited 97.7% CIP degradation within 15 min of illumination. The enhanced adsorption efficiency was primarily attributed to the effective dispersion and the presence of mesopores. Furthermore, the introduction of oxygen vacancies and improved photogenerated carrier separation efficiency contributed to enhanced photocatalytic performance. This study introduces a novel method for structurally tuning bismuth molybdate.
引用
收藏
页码:6420 / 6429
页数:10
相关论文
共 50 条
  • [31] H2O2 PRODUCTION IN RAT ISOLATED HEPATOCYTES
    KALTWASSER, G
    LEIGHTON, F
    ARCHIVOS DE BIOLOGIA Y MEDICINA EXPERIMENTALES, 1980, 13 (01): : 78 - 78
  • [32] In Vivo Imaging of H2O2 Production in Drosophila
    Barata, Ana G.
    Dick, Tobias P.
    HYDROGEN PEROXIDE AND CELL SIGNALING, PT A, 2013, 526 : 61 - 82
  • [33] Removal and transformation of odorous aldehydes by UV/H2O2
    Jo, Chang Hyun
    Dietrich, Andrea M.
    JOURNAL OF WATER SUPPLY RESEARCH AND TECHNOLOGY-AQUA, 2009, 58 (08): : 580 - 586
  • [34] Removal of amoxicillin by UV and UV/H2O2 processes
    Jung, Yeon Jung
    Kim, Wan Gi
    Yoon, Yeojoon
    Kang, Joon-Wun
    Hong, Young Min
    Kim, Hyun Wook
    SCIENCE OF THE TOTAL ENVIRONMENT, 2012, 420 : 160 - 167
  • [35] ELECTROCHEMICAL PRODUCTION OF H2O2 AND O-2 AT AN ANTHRACENE H2O INTERFACE
    POPE, M
    SLOTNICK, K
    JOURNAL OF PHYSICAL CHEMISTRY, 1982, 86 (11): : 1923 - 1924
  • [36] Study on removal of caramel color in wastewater by H2O2/Fe2+ and H2O2/Fe2+/UV
    左金龙
    李俊生
    车春波
    黄丽坤
    吴昌永
    彭赵旭
    哈尔滨商业大学学报(自然科学版), 2010, (06) : 660 - 661
  • [37] Characterization of a real time H2O2 monitor for use in studies on H2O2 production by antibodies and cells
    Sharma, HA
    Balcavage, WX
    Waite, LR
    Johnson, MT
    Nindl, G
    BIOMEDICAL SCIENCES INSTRUMENTATION, VOL 39, 2003, 39 : 554 - 560
  • [38] Degradation of Calmagite by H2O2/UV/US, H2O2/US, H2O2, and US process
    Menek, Necati
    Ugurlar, Ceren
    Ucarh, Okan
    Karaman, Yeliz
    Omanovic, Sasha
    Ghasemian, Saloumeh
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (05) : 4127 - 4135
  • [39] High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition
    Lee, Jae Hwa
    Cho, Hyeonjin
    Park, Sung O.
    Hwang, Jeong Min
    Hong, Yerin
    Sharma, Pankaj
    Jeon, Woo Cheol
    Cho, Yongjoon
    Yang, Changduk
    Kwak, Sang Kyu
    Moon, Hoi Ri
    Jang, Ji-Wook
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 284
  • [40] PRODUCTION OF H, OH, AND H2O2 IN FLASH PHOTOLYSIS OF ICE
    GHORMLEY, JA
    HOCHANDE.CJ
    JOURNAL OF PHYSICAL CHEMISTRY, 1971, 75 (01): : 40 - &