Q-Map: quantum circuit implementation of boolean functions

被引:0
|
作者
Hajjdiab, Hassan [1 ]
Khalil, Ashraf [2 ]
Eleuch, Hichem [3 ,4 ]
机构
[1] Concordia Univ, Comp Sci & Software Engn Dept, Montreal, PQ, Canada
[2] Zayed Univ, Coll Technol Innovat, Abu Dhabi, U Arab Emirates
[3] Univ Sharjah, Dept Appl Phys & Astron, Sharjah, U Arab Emirates
[4] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
关键词
reveresible computing; quantum circuit; boolean function; QISKIT; REVERSIBLE LOGIC; SUPREMACY;
D O I
10.1088/1402-4896/ad5c17
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum computing has gained attention in recent years due to the significant progress in quantum computing technology. Today many companies like IBM, Google and Microsoft have developed quantum computers and simulators for research and commercial use. The development of quantum techniques and algorithms is essential to exploit the full power of quantum computers. In this paper we propose a simple visual technique (we call Q-Map) for quantum realization of classical Boolean logic circuits. The proposed method utilizes concepts from Boolean algebra to produce a quantum circuit with minimal number of quantum gates.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] On the monotone circuit complexity of quadratic Boolean functions
    Amano, K
    Maruoka, A
    ALGORITHMS AND COMPUTATION, 2004, 3341 : 28 - 40
  • [22] Circuit Complexity and Multiplicative Complexity of Boolean Functions
    Kojevnikov, Arist
    Kulikov, Alexander S.
    PROGRAMS, PROOFS, PROCESSES, 2010, 6158 : 239 - 245
  • [23] The monotone circuit complexity of quadratic Boolean functions
    Amano, Kazuyuki
    Maruoka, Akira
    ALGORITHMICA, 2006, 46 (01) : 3 - 14
  • [24] The Monotone Circuit Complexity of Quadratic Boolean Functions
    Kazuyuki Amano
    Akira Maruoka
    Algorithmica, 2006, 46 : 3 - 14
  • [25] Quantum learning of concentrated Boolean functions
    Krishna Palem
    Duc Hung Pham
    M. V. Panduranga Rao
    Quantum Information Processing, 21
  • [26] Quantum learning of concentrated Boolean functions
    Palem, Krishna
    Pham, Duc Hung
    Rao, M. V. Panduranga
    QUANTUM INFORMATION PROCESSING, 2022, 21 (07)
  • [27] A Quantum Algorithm for Boolean Functions Processing
    Aljuaydi, Fahad
    Abdelazim, Samar
    Darwish, Mohamed M.
    Zidan, Mohammed
    IEEE ACCESS, 2024, 12 : 164503 - 164519
  • [28] Construction of Generalized Quantum Boolean Functions
    PANG Shanqi
    ZHANG Qingjuan
    LIN Xiao
    ChineseJournalofElectronics, 2019, 28 (03) : 508 - 513
  • [29] Construction of Generalized Quantum Boolean Functions
    Pang Shanqi
    Zhang Qingjuan
    Lin Xiao
    CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (03) : 508 - 513
  • [30] Random Networks with Quantum Boolean Functions
    Franco, Mario
    Zapata, Octavio
    Rosenblueth, David A.
    Gershenson, Carlos
    MATHEMATICS, 2021, 9 (08)