Review on Fashion Trend Analysis and Forecasting Techniques - A Machine Learning Approach

被引:0
|
作者
Jiju, Amrita [1 ]
Anilkumar, Adithya [1 ]
Krishnan, Gokul K. P. [1 ]
George, Jithu [1 ]
Prasanth, R. S. [1 ]
机构
[1] Govt Engn Coll Barton Hill, Dept Informat Technol, Thiruvananthapuram, Kerala, India
关键词
machine learning; deep learning; neural networks; object detection; fashion item classification; feature extraction; fashion recommendation; fashion dataset; trend analysis; social media;
D O I
10.1109/CITIIT61487.2024.10580247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The fashion industry is characterized by its rapid changes involving consumer's ever-changing preferences, whether in color palettes, patterns, seasonal trends, or social and cultural influences. Fashion reflects one's culture, individuality, and societal trends. With technological advancement, the fashion generation and recommendation systems have shown enhancements. The integration of advanced algorithms has emerged as a transformative solution, capable of uncovering concealed insights and effectively addressing color variations and pattern formulation within the intricate landscape of fashion collections. This transformative approach significantly influences production processes and design strategies, fostering an environment where adaptability and responsiveness become pivotal for success. With the rise of machine learning, the industry experiences a paradigm shift, gaining an unprecedented ability to analyze historical and real-time data. The analysis gives a clear idea about the possible combinations and can be efficiently used to create designs that match the upcoming trends. This study examines the use of machine learning as well as deep learning and artificial intelligence in the fashion industry for tasks such as clothing recognition, style understanding, color and style extraction, outfit recommendations, and fashion forecasting. The study highlights various ways of applying machine learning in the fashion domain. However, it's important to note that this review only covers a few methods, as they have shown the best performance in accuracy and efficiency when dealing with a vast amount of fashion data. The limitations mentioned suggest areas that still need exploration for future research.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Financial forecasting: Advanced machine learning techniques in stock market analysis
    Yoo, Paul D.
    Kim, Maria H.
    Jan, Tony
    PROCEEDINGS OF THE INMIC 2005: 9TH INTERNATIONAL MULTITOPIC CONFERENCE - PROCEEDINGS, 2005, : 40 - 46
  • [22] COMPARATIVE ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR FORECASTING WEATHER: A CASE STUDY
    Diaz-Ramirez, Jorge
    Badilla-Torrico, Ximena
    Munoz, Fabian Santiago
    Bernabe, Miguel Pinto
    Quenaya-Quenaya, Ernie
    INTERCIENCIA, 2024, 49 (05) : 305 - 313
  • [23] A Multi-class Classification Approach for Weather Forecasting with Machine Learning Techniques
    Dritsas, Elias
    Trigka, Maria
    Mylonas, Phivos
    2022 17TH INTERNATIONAL WORKSHOP ON SEMANTIC AND SOCIAL MEDIA ADAPTATION & PERSONALIZATION (SMAP 2022), 2022, : 81 - 85
  • [24] A Novel Approach for Forecasting Price of Stock Market using Machine Learning Techniques
    Yadav A.
    Kumar V.
    Singh S.
    Mishra A.K.
    SN Computer Science, 5 (6)
  • [25] An approach based on machine learning techniques for forecasting Vietnamese consumers' purchase behaviour
    Quang Hung Do
    Tran Van Trang
    DECISION SCIENCE LETTERS, 2020, 9 (03) : 313 - 322
  • [26] Explainability and Interpretability in Electric Load Forecasting Using Machine Learning Techniques - A Review
    Baur, Lukas
    Ditschuneit, Konstantin
    Schambach, Maximilian
    Kaymakci, Can
    Wollmann, Thomas
    Sauer, Alexander
    ENERGY AND AI, 2024, 16
  • [27] Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques
    Akhter, Muhammad Naveed
    Mekhilef, Saad
    Mokhlis, Hazlie
    Shah, Noraisyah Mohamed
    IET RENEWABLE POWER GENERATION, 2019, 13 (07) : 1009 - 1023
  • [28] Chaotic Time Series Forecasting Approaches Using Machine Learning Techniques: A Review
    Ramadevi, Bhukya
    Bingi, Kishore
    SYMMETRY-BASEL, 2022, 14 (05):
  • [29] A machine learning approach to scenario analysis and forecasting of mixed migration
    Nair, R.
    Madsen, B. S.
    Lassen, H.
    Baduk, S.
    Nagarajan, S.
    Mogensen, L. H.
    Novack, R.
    Curzon, R.
    Paraszczak, J.
    Urbak, S.
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2020, 64 (1-2)
  • [30] A machine learning approach to scenario analysis and forecasting of mixed migration
    Nair, R.
    Urbak, S.
    Madsen, B.S.
    Lassen, H.
    Baduk, S.
    Nagarajan, S.
    Mogensen, L.H.
    Novack, R.
    Curzon, R.
    Paraszczak, J.
    IBM Journal of Research and Development, 2020, 64 (1-2):