Zero crossing point detection in a distorted sinusoidal signal using random forest classifier

被引:0
|
作者
Veeramsetty, Venkataramana [1 ]
Jadhav, Pravallika [2 ]
Ramesh, Eslavath [2 ]
Srinivasula, Srividya [2 ]
机构
[1] SR Univ, Ctr AI & Deep Learning, Warangal 506371, India
[2] SR Univ, Dept Elect & Elect Engn, Warangal, India
关键词
Zero-crossing point; Distorted signals; Random forest; Machine learning; Classification; RECOGNITION;
D O I
10.1007/s13198-024-02484-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The identification of zero-crossing points in a sinusoidal signal is critical in a variety of electrical applications, including protection of power system components and designing of controllers. In this article, 96 datasets are generated from a deformed sinusoidal waveforms using MATLAB. MATLAB generates deformed sinusoidal waves with varying amounts of noise and harmonics. In this study, a random forest model is utilized to estimate the zero crossing point in a deformed waveform using input characteristics such as the slope, intercept, correlation, and RMSE. The random forest model was developed and evaluated in the Google Colab platform. According to simulation data, the model based on random forest predicts the zero-crossing point more accurately than other models such as logistic regression and decision tree classifier.
引用
收藏
页码:4806 / 4824
页数:19
相关论文
共 50 条
  • [21] Artifact Detection in Multichannel Sleep EEG using Random Forest Classifier
    Saifutdinova, Elizaveta
    Dudysova, Daniela Urbaczka
    Lhotska, Lenka
    Gerla, Vaclav
    Macas, Martin
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2803 - 2805
  • [22] Effect of multi filters in glucoma detection using random forest classifier
    K A.
    N D.
    T D.
    B B B.
    N B.D.
    V N.
    Measurement: Sensors, 2023, 25
  • [23] Modeling DDOS attacks in sdn and detection using random forest classifier
    Abdullahi Wabi, Aishatu
    Idris, Ismail
    Mikail Olaniyi, Olayemi
    Joseph, A.
    Surajudeen Adebayo, Olawale
    Journal of Cyber Security Technology, 2024, 8 (04) : 229 - 242
  • [24] A Novel Approach for Detection of Hard Exudates Using Random Forest Classifier
    Pratheeba, C.
    Singh, N. Nirmal
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (07)
  • [25] Early detection of Sepsis in critical patients using Random Forest Classifier
    Mahmud, Fahim
    Pathan, Naqib Sad
    Quamruzzaman, Muhammad
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 130 - 133
  • [26] A Novel Approach for Detection of Hard Exudates Using Random Forest Classifier
    C. Pratheeba
    N. Nirmal Singh
    Journal of Medical Systems, 2019, 43
  • [27] Zero-crossing detection of distorted line voltages using 1-b measurements
    Väliviita, S
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1999, 46 (05) : 917 - 922
  • [28] Sleep Apnea Detection Using Wavelet Scattering Transformation and Random Forest Classifier
    Sharaf, Ahmed. I. I.
    ENTROPY, 2023, 25 (03)
  • [29] DDoS Detection Using Information Gain Feature Selection and Random Forest Classifier
    Mandala, Satria
    Ramadhan, Alvien Ihsan
    Rosalinda, Maya
    Zaki, Salim M.
    Weippl, Edgar
    2022 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBERNETICS TECHNOLOGY & APPLICATIONS (ICICYTA), 2022, : 294 - 299
  • [30] RIGHT VENTRICLE LANDMARK DETECTION USING MULTISCALE HOG AND RANDOM FOREST CLASSIFIER
    Sedai, Suman
    Roy, Pallab Kanti
    Garnavi, Rahil
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 814 - 818