A superhydrophobic droplet triboelectric nanogenerator inspired by water strider for self-powered smart greenhouse

被引:15
|
作者
Zhou, Lina [1 ]
Zhang, Dongzhi [1 ]
Ji, Xinyi [1 ]
Zhang, Hao [1 ]
Wu, Yan [1 ]
Yang, Chunqing [1 ]
Xu, Zhenyuan [1 ]
Mao, Ruiyuan [1 ]
机构
[1] China Univ Petr East China, Coll Control Sci & Engn, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerators; Superhydrophobic; Corrosion-resistant; Smart greenhouse; Environmental monitoring;
D O I
10.1016/j.nanoen.2024.109985
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the widespread adoption of smart greenhouses, there is a significant increase in energy demand. Triboelectric nanogenerator (TENG) as an emerging energy harvesting technology has vast prospects for applications. Inspired by the water strider's ability to freely glide on the water surface, this study proposes a biomimetic superhydrophobic nanofiber film with rigid microstructures resembling the water strider's foot hairs as the negative friction layer material. It is utilized for constructing a superhydrophobic triboelectric nanogenerator (SH-TENG) for harvesting raindrop energy. The SH-TENG achieves an open-circuit voltage of 100 V and a shortcircuit current of 15 mu A. Furthermore, a theoretical model is proposed that relates the droplet release height to the droplet diffusion area. The correctness of this model is verified by experiments, providing further evidence for the process of converting droplet mechanical energy into electricity by SH-TENG. Finally, an SH-TENG with multiple top electrodes is proposed to continuously collect the energy of raindrops during falling. serving as a sustainable power source for self-powered environmental monitoring in smart greenhouses, corrosion protection of greenhouse steel frames, and electrically-stimulated pesticide controlled-release. This work provides a convenient approach for efficient collection of raindrop energy based on interface behavior control, which will guide the further development of droplet-based TENG towards higher performance and offer an innovative and sustainable solution to the energy supply issue in smart greenhouses.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A self-powered droplet sensor based on a triboelectric nanogenerator toward the concentration of green tea polyphenols
    Lin, Guochen
    Su, Chang
    Bao, Chengmin
    Zhang, Maoyi
    Li, Chuanbo
    Yang, Ya
    NANOSCALE, 2024, 16 (31) : 14784 - 14792
  • [32] Highly Efficient Raindrop Energy-Based Triboelectric Nanogenerator for Self-Powered Intelligent Greenhouse
    Zhang, Qi
    Jiang, Chengmei
    Li, Xunjia
    Dai, Shufen
    Ying, Yibin
    Ping, Jianfeng
    ACS NANO, 2021, 15 (07) : 12314 - 12323
  • [33] Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy
    Yu, Junjie
    Wei, Xiaoxiang
    Guo, Yuanchao
    Zhang, Ziwei
    Rui, Pinshu
    Zhao, Yan
    Zhang, Wen
    Shi, Shiwei
    Wang, Peihong
    LAB ON A CHIP, 2021, 21 (02) : 284 - 295
  • [34] Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces
    Lee, Jeong Hwan
    Kim, SeongMin
    Kim, Tae Yun
    Khan, Usman
    Kim, Sang-Woo
    NANO ENERGY, 2019, 58 : 579 - 584
  • [35] Fountain-inspired triboelectric nanogenerator as rotary energy harvester and self-powered intelligent sensor
    Yin, Gefan
    Liang, Xuexiu
    Zhang, Ying
    Li, Jian
    Wei, Shimin
    NANO ENERGY, 2025, 137
  • [36] Bio-inspired triboelectric nanogenerator as a self-powered gait recognition sensor for legged robots
    Sun, Ruixue
    Wu, Pengfan
    Li, Pei
    Jiang, Jianchun
    Shou, Mengjie
    Chen, Qiao
    Yang, Pingan
    Wang, Fayang
    Liao, Changrong
    SCIENCE CHINA-MATERIALS, 2025, : 1542 - 1551
  • [37] Fully self-powered electrocaloric cooling/heating with triboelectric nanogenerator
    Li, Jiayu
    Liu, Boxun
    Liang, Chuangjian
    Wan, Lingyu
    Wei, Wenjuan
    Gao, Hongqiang
    Li, Mingyang
    Li, Yahui
    Ding, Wangyang
    Qu, Hang
    Wen, Honggui
    Yu, Fang
    Yao, Huilu
    Liu, Guanlin
    Peng, Biaolin
    Lu, Xiang
    NANO ENERGY, 2022, 101
  • [38] A Triboelectric Nanogenerator Array for a Self-Powered Boxing Sensor System
    Feng Gao
    Junwei Yao
    Cheng Li
    Lianwen Zhao
    Journal of Electronic Materials, 2022, 51 : 3308 - 3316
  • [39] Self-powered liquid crystal lens based on a triboelectric nanogenerator
    Chen, Wandi
    Wang, Wenwen
    Li, Shiyao
    Kang, Jiaxin
    Zhang, Yongai
    Yan, Qun
    Guo, Tailiang
    Zhou, Xiongtu
    Wu, Chaoxing
    NANO ENERGY, 2023, 107
  • [40] Perspectives on self-powered respiration sensor based on triboelectric nanogenerator
    Chen, Yanmeng
    Li, Weixiong
    Chen, Chunxu
    Tai, Huiling
    Xie, Guangzhong
    Jiang, Yadong
    Su, Yuanjie
    APPLIED PHYSICS LETTERS, 2021, 119 (23)