MoS2/SnS heterostructure composite for high-performance lithium-ion battery anodes

被引:1
|
作者
Guo, Yiwen [1 ]
Liu, Kun [2 ]
Liu, Wenlong [1 ]
Zhang, Ning [1 ]
Sun, Xiaodong [1 ]
Li, Song [1 ]
Wen, Zhongsheng [1 ]
Sun, Juncai [1 ]
机构
[1] Dalian Maritime Univ, Inst Mat & Technol, Dalian 116026, Peoples R China
[2] Sinopec Dalian Res Inst Petr & Petrochem, Dalian 116045, Peoples R China
关键词
Metal sulfides; Heterostructure; Hydrothermal; Anode; Lithium-ion batteries; GRAPHENE OXIDE NANOCOMPOSITES; STORAGE; CARBON; NANOSHEETS; CAPACITY;
D O I
10.1016/j.solidstatesciences.2024.107660
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Layered metal sulfides are potential anode materials for lithium-ion batteries (LIBs) because their unique structure makes them suitable for Li+ de-intercalation. As a typical 2D layered material, MoS2 is a potential anode material for LIBs due to the weak van der Waals forces between the layers, which facilitates the deintercalation of Li+ and supports multiple Li+. However, when MoS2 is used as anodes for LIBs material, rapid capacity decay hinders the application. Coupling two different materials to form a heterogeneous structure is an effective way to solve the above problems. In this work, one-pot hydrothermal method is proposed to construct MoS2/SnS heterostructure composites. The electrochemical properties are significantly enhanced, which could be attributed to the presence of heterogeneous structures, leading to increase the electrode charge transfer rate and interfacial reaction kinetics. The results show that the discharge capacity of the MoS2/SnS-1.5 electrode is about 1492.1 mAh/g at 500 mA/g. Furthermore, assembled MoS2@SnS-1.5||LiCoO2 full cell displays a high discharge capacity of 226.1 mAh/g after 50 cycles at 500 mA/g. This facile method provides the application value of layered metal sulfides as LIBs anode materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes
    Wang, Qi
    Zhao, Jun
    Shan, Wanfei
    Xia, Xinbei
    Xing, Lili
    Xue, Xinyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 590 : 424 - 427
  • [22] High-performance and flexible lithium-ion battery anodes using modified buckypaper
    Kim, Hyungjoo
    Ri, Vitalii
    Koo, Jahun
    Kim, Chunjoong
    Shin, Hosun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 930
  • [23] Laser structured Cu foil for high-performance lithium-ion battery anodes
    Zhang, Ningxin
    Zheng, Yijing
    Trifonova, Atanaska
    Pfleging, Wilhelm
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2017, 47 (07) : 829 - 837
  • [24] A review on structuralized current collectors for high-performance lithium-ion battery anodes
    Yang, Yang
    Yuan, Wei
    Zhang, Xiaoqing
    Ke, Yuzhi
    Qiu, Zhiqiang
    Luo, Jian
    Tang, Yong
    Wang, Chun
    Yuan, Yuhang
    Huang, Yao
    APPLIED ENERGY, 2020, 276 (276)
  • [25] Laser structured Cu foil for high-performance lithium-ion battery anodes
    Ningxin Zhang
    Yijing Zheng
    Atanaska Trifonova
    Wilhelm Pfleging
    Journal of Applied Electrochemistry, 2017, 47 : 829 - 837
  • [26] Synthesis of MoS2 Hierarchical Nanostructure and Its Performance for Lithium-ion Battery
    Feng Huijie
    Zheng Wenjun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2017, 38 (07): : 1134 - 1139
  • [27] Internally and externally modified Mn2SnS4@ZnS@NC nanocassettes for high-performance lithium-ion battery anodes
    Zhou, Xin
    Gao, Jie
    Xu, Huizhong
    Xu, Xiaojun
    Zhuang, Ziqiushui
    Wu, Qianqian
    Lin, Jianjian
    Li, Wei
    JOURNAL OF ENERGY STORAGE, 2025, 107
  • [28] Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes
    Liu, Yuping
    He, Xiaoyun
    Hanlon, Damien
    Harvey, Andrew
    Khan, Umar
    Li, Yanguang
    Coleman, Jonathan N.
    ACS NANO, 2016, 10 (06) : 5980 - 5990
  • [29] Intergrown SnO2–TiO2@graphene ternary composite as high-performance lithium-ion battery anodes
    Zheng Jiao
    Renmei Gao
    Haihua Tao
    Shuai Yuan
    Laiqiang Xu
    Saisai Xia
    Haijiao Zhang
    Journal of Nanoparticle Research, 2016, 18
  • [30] Mechanically robust and size-controlled MoS2/graphene hybrid aerogels as high-performance anodes for lithium-ion batteries
    Pingge He
    Keren Zhao
    Boyun Huang
    Baoqiang Zhang
    Qun Huang
    Tengfei Chen
    Qiangqiang Zhang
    Journal of Materials Science, 2018, 53 : 4482 - 4493