Bloch varieties and quantum ergodicity for periodic graph operators

被引:1
|
作者
Liu, Wencai [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2024年 / 153卷 / 02期
关键词
DIRECTIONAL COMPACTIFICATION; DISCRETE;
D O I
10.1007/s11854-024-0339-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For periodic graph operators, we establish criteria to determine the overlaps of spectral band functions based on Bloch varieties. One criterion states that for a large family of periodic graph operators, the irreducibility of Bloch varieties implies no non-trivial periods for spectral band functions. This particularly shows that spectral band functions of discrete periodic Schrodinger operators on Z(d) have no non-trivial periods, answering positively a question asked by Mckenzie and Sabri [Quantum ergodicity for periodic graphs, Comm. Math. Phys. 403 (2023), 1477-1509].
引用
收藏
页码:671 / 681
页数:11
相关论文
共 50 条
  • [21] Algebraic properties of the Fermi variety for periodic graph operators
    Fillman, Jake
    Liu, Wencai
    Matos, Rodrigo
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (04)
  • [22] Irreducibility of the Fermi surface for planar periodic graph operators
    Li, Wei
    Shipman, Stephen P.
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (09) : 2543 - 2572
  • [23] Limits of quantum graph operators with shrinking edges
    Berkolaiko, Gregory
    Latushkin, Yuri
    Sukhtaiev, Selim
    ADVANCES IN MATHEMATICS, 2019, 352 : 632 - 669
  • [24] Affine Deligne–Lusztig varieties and quantum Bruhat graph
    Arghya Sadhukhan
    Mathematische Zeitschrift, 2023, 303
  • [25] Mean ergodicity for compact operators
    Radjavi, H
    Tam, PK
    Tan, KK
    STUDIA MATHEMATICA, 2003, 158 (03) : 207 - 217
  • [26] Random periodic processes, periodic measures and ergodicity
    Feng, Chunrong
    Zhao, Huaizhong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) : 7382 - 7428
  • [27] ERGODICITY IN PERIODIC AUTOREGRESSIVE MODELS
    JACOB, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (06): : 431 - 434
  • [28] Weak quantum ergodicity
    Kaplan, L
    Heller, EJ
    PHYSICA D-NONLINEAR PHENOMENA, 1998, 121 (1-2) : 1 - 18
  • [29] REMARKS ON QUANTUM ERGODICITY
    Riviere, Gabriel
    JOURNAL OF MODERN DYNAMICS, 2013, 7 (01) : 119 - 133
  • [30] On periodic ergodicity of a general periodic mixed Poisson autoregression
    Aknouche, Abdelhakim
    Bentarzi, Wissam
    Demouche, Nacer
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 15 - 21