Sustainable pyrolytic carbon negative electrodes for sodium-ion batteries

被引:0
|
作者
Wu, Zinan [1 ]
Li, Xiaoxin [1 ]
Xie, Furong [1 ]
Chen, Rong [1 ]
Deng, Chao [1 ]
Weng, Guo-Ming [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai Key Lab Hydrogen Sci, Shanghai 200240, Peoples R China
关键词
CHARGE STORAGE MECHANISM; SOFT CARBON; RAMAN-SPECTROSCOPY; KOH ACTIVATION; ANODE MATERIAL; NANOTUBES; DIFFUSION; IMPEDANCE; INSERTION; INSIGHTS;
D O I
10.1016/j.jpowsour.2024.235262
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Considering both sustainability and potential applications in various industrial sectors, pyrolytic carbon from the recycling of organic solid wastes can play a significant part in the unfolding energy revolution. Further innovations in circular-economy waste loops can facilitate higher economic benefits and lower environmental impacts, where a number of opportunities for improving pyrolytic carbon by choices of precursors, easy regulation of pyrolysis conditions and potential post- treatments. Here we propose a method to synthesize sustainable high-quality nanotube-like pyrolytic carbon using waste pyrolysis gas from the decomposition of waste epoxy resin as precursor, and conduct the exploration of its properties for possible use as a negative electrode material in sodium-ion batteries. The obtained pyrolytic carbon shows better cycling and rate performance than benchmark commercial hard carbon, retaining similar to 105 mA h g(-1) after 2000 cycles at 100 mA g(-1) and exhibiting similar to 57 mA h g(-1) at 1 A g(-1). Since the slope-dominated nature of pyrolytic carbon leads to high performance dependence on defects and pore structure, we therefore also investigate the preferred design of pore structure via pore-forming by post-treatment. It is found that reversible adsorption/desorption on defect sites and optimal pore structure are highly needed for pyrolytic carbon toward practical applications. This work highlights the potential of waste pyrolysis gas itself as a valuable feedstock for the production of value-added carbon materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Electrochemistry of sodium titanate nanotubes as a negative electrode for sodium-ion batteries
    Leite, Marina M.
    Martins, Vitor L.
    Vichi, Flavio M.
    Torresi, Roberto M.
    ELECTROCHIMICA ACTA, 2020, 331 (331)
  • [32] Sodium-ion batteries
    不详
    PRZEMYSL CHEMICZNY, 2019, 98 (05): : 702 - 703
  • [33] Sodium-ion batteries: Electrochemical properties of sodium titanate as negative electrode
    Libich, J.
    Minda, Jozef
    Sedlarikova, M.
    Vondrak, J.
    Maca, J.
    Fibek, M.
    Cudek, P.
    Chekannikov, A.
    Fafilek, G.
    JOURNAL OF ENERGY STORAGE, 2020, 27
  • [34] Sodium-Ion Batteries
    Rojo, Teofilo
    Hu, Yong-Sheng
    Forsyth, Maria
    Li, Xiaolin
    ADVANCED ENERGY MATERIALS, 2018, 8 (17)
  • [35] Sodium-Titanate as Negative Electrode Material for Sodium-Ion batteries
    Libich, J.
    Kundu, M.
    Cech, O.
    Sedlarikova, M.
    Vondrak, J.
    Cudek, P.
    Maca, J.
    17TH INTERNATIONAL CONFERENCE ON ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 2016), 2016, 74 (01): : 313 - 319
  • [36] Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries
    Zhong, Xiongwu
    Wu, Ying
    Zeng, Sifan
    Yu, Yan
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (10) : 1248 - 1265
  • [37] Recycling and second life of MXene electrodes for lithium-ion batteries and sodium-ion batteries
    Li, Yunjie
    Arnold, Stefanie
    Husmann, Samantha
    Presser, Volker
    JOURNAL OF ENERGY STORAGE, 2023, 60
  • [38] Electrochemical Performance of Flexible Electrodes for Supercapacitors, Lithium-Ion Batteries, and Sodium-Ion Batteries
    Xiao, Zhiyuan
    Li, Xinyi
    Pan, Jiarui
    Qi, Meili
    Guo, Xiaoling
    CHEMISTRYSELECT, 2024, 9 (35):
  • [39] Nanoengineering of Advanced Carbon Materials for Sodium-Ion Batteries
    Zhao, Shuoqing
    Guo, Ziqi
    Yang, Jian
    Wang, Chengyin
    Sun, Bing
    Wang, Guoxiu
    SMALL, 2021, 17 (48)
  • [40] Nano-Confined Electrolyte for Sustainable Sodium-Ion Batteries
    Fan, Yanpeng
    Chang, Zhi
    Wu, Zhonghan
    Feng, Yang
    Du, Xiaomeng
    Che, Meihong
    Tian, Jing
    Xie, Wei
    Zhang, Kai
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (23)